
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

ROBUST LOOP-FREE ON-DEMAND ROUTING
IN AD HOC NETWORKS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Hari Rangarajan

June 2006

The Dissertation of Hari Rangarajan
is approved:

Professor J.J. Garcia-Luna-Aceves, Chair

Professor Katia Obraczka

Professor Anujan Varma

Lisa C. Sloan
Vice Chancellor for Research and
Dean of Graduate Studies

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2006 2. REPORT TYPE

3. DATES COVERED
 00-06-2006 to 00-06-2006

4. TITLE AND SUBTITLE
Robust Loop-Free On-Demand Routing in Ad Hoc Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

223

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright c© by

Hari Rangarajan

2006

Contents

List of Figures vii

List of Tables ix

Abstract xi

Dedication xiii

Acknowledgments xiv

1 Introduction 1
1.1 Destination Sequence numbers . 3
1.2 Topology Information . 6

1.2.1 Paths as labels . 9
1.2.2 Paths with untrusted topology information 10

1.3 Source-Sequence numbers . 11

2 Routing using destination sequence numbers 13
2.1 Introduction . 13
2.2 Sequence Numbering Problems in AODV . 16

2.2.1 Looping . 17
2.2.2 De-Facto Partitions . 18
2.2.3 Counting to Infinity in AODV . 18

2.3 Loop-Freedom using Sequence numbers . 21
2.3.1 Sufficient conditions . 21
2.3.2 Reseting destination sequence numbers 22

2.4 On-demand Routing Framework . 24
2.4.1 Control Messages . 24
2.4.2 Information Stored . 25
2.4.3 Generation of Sequence Numbers . 26
2.4.4 Conditions . 26
2.4.5 Basic Route Operations . 27

iii

2.4.6 Message Handling . 28
2.4.7 Example . 31
2.4.8 Analysis . 32

2.5 AODV with Robust Sequence Numbering . 35
2.5.1 Control Message modifications . 35
2.5.2 Stored Information . 36
2.5.3 RREPs and RREQs . 36
2.5.4 Reverse Routes . 37

2.6 Sequence Number Window Routing Protocol 37
2.6.1 Sufficient conditions for loop-freedom using sequence number labels . 37
2.6.2 Sequence Number Windows . 39
2.6.3 Conditions . 41
2.6.4 Additional Information and Control Messages 42
2.6.5 Message Handling . 42
2.6.6 Local Route Repair . 44
2.6.7 Reverse Routes . 44
2.6.8 SWR Example . 45
2.6.9 Analysis . 48

2.7 Performance Comparison . 51
2.7.1 Simulation Setup . 51
2.7.2 Performance Criteria . 52
2.7.3 Performance Discussion . 52

2.8 Conclusion . 57

3 Routing using labels as path information 63
3.1 Introduction . 63
3.2 Conditions . 65
3.3 Feasible Label Routing Protocol (FLR) . 70

3.3.1 Principles of Operation . 70
3.3.2 Information Stored and Exchanged 72
3.3.3 Basic Route Maintenance . 73
3.3.4 Route Maintenance Optimizations . 76
3.3.5 Forwarding Data Packets . 82

3.4 Application to DSR and AODV . 83
3.5 FLR Example . 84

3.5.1 Update Activity . 85
3.5.2 Loop Detection . 87

3.6 Analysis of FLR . 89
3.6.1 Loop-Freedom in FLR . 90
3.6.2 Correct Termination in FLR . 93

3.7 Performance Comparison . 97
3.7.1 Simulation Setup . 99
3.7.2 Performance Metrics . 100

iv

3.7.3 Performance Discussion . 100
3.8 Conclusions . 105

4 Routing using trusted topology information 110
4.1 Introduction . 110
4.2 Sufficient conditions for Loop-Freedom using link vectors 112

4.2.1 Network and routing Model . 112
4.2.2 Loop-free condition . 113
4.2.3 Illustration of loop-free condition . 117

4.3 Link Vector Routing (LVR) Protocol . 119
4.3.1 Information Stored and Exchanged 120
4.3.2 Route Search and Maintenance . 121
4.3.3 Route Establishment . 124
4.3.4 Handling Failures . 126
4.3.5 Resetting Link-Coordination Sets . 126
4.3.6 Cache Maintenance . 127

4.4 Example . 128
4.4.1 LVR operation . 128
4.4.2 DSR packet salvaging . 132
4.4.3 Use of topology information in LVR 132

4.5 Analysis . 134
4.6 Performance . 136

4.6.1 Simulation Setup . 136
4.6.2 Performance Metrics . 137
4.6.3 Performance Discussion . 137

4.7 Conclusion . 143

5 Routing using source sequence numbers 149
5.1 On-Demand Routing Using Source Sequence Numbers and Destination Replies 151

5.1.1 Information Stored . 151
5.1.2 Control Signaling . 152
5.1.3 Sufficient Conditions for Loop Freedom 155
5.1.4 Source Sequence-number condition 155
5.1.5 Source Sequence-number Ordered condition 159
5.1.6 Basic Route Maintenance . 163
5.1.7 Termination Properties . 164
5.1.8 Non-caching Option . 166
5.1.9 Example with SSC . 167
5.1.10 Example using SSOC . 169

5.2 On-Demand Routing Using Source Sequence Numbers and Replies from Nodes
with Valid Routes . 170
5.2.1 Viable Successor Sets . 171
5.2.2 Labeling with Source Sequence Numbers 172

v

5.2.3 Simplified Labeling . 176
5.2.4 Example . 177
5.2.5 Route Search . 179
5.2.6 Termination Properties . 180

5.3 On-Demand Routing Using SSLs and Distance Information to Allow Replies
from Nodes with Valid Routes . 182
5.3.1 Sufficient Conditions for Loop-freedom 182
5.3.2 Route Search . 185
5.3.3 Termination Properties . 186

5.4 Simulation Results . 189
5.4.1 Performance Summary . 190
5.4.2 Performance Improvements with Local route recovery 192

5.5 Conclusion . 195

6 Conclusions and Future Work 200
6.1 Conclusions . 200
6.2 Future Work . 202

Bibliography 204

vi

List of Figures

2.1 Issues with DELETE PERIOD in AODV . 16
2.2 AODV count-to-infinity example . 19
2.3 Re-learning sequence numbers safely after losing state 30
2.4 Sequence number assignment in AODV . 39
2.5 Sequence number windows . 41
2.6 SWR operation - Example . 46
2.7 Random (100-nodes, 30-flows, 120 pps) . 59
2.8 Fixed (100-nodes, 30-flows, 120 pps) . 60
2.9 Random (50-nodes, 30-flows, 120 pps) . 61
2.10 Fixed (50-nodes, 30-flows, 120 pps) . 62

3.1 Illustration of FLR. 86
3.2 Illustration of FLR with destination-sequenced labels 87
3.3 Random (100-nodes, 30-flows, 120 pps) . 106
3.4 Fixed (100-nodes, 30-flows, 120 pps) . 107
3.5 Random (50-nodes, 30-flows, 120 pps) . 108
3.6 Fixed (50-nodes, 30-flows, 120 pps) . 109

4.1 LVC loop-free condition . 114
4.2 LVC Illustration . 118
4.3 LVR protocol operation . 129
4.4 Loops using DSR packet salvaging operation 130
4.5 Random (100-nodes, 30-flows, 120 pps) . 145
4.6 Fixed (100-nodes, 30-flows, 120 pps) . 146
4.7 Random (50-nodes, 30-flows, 120 pps) . 147
4.8 Fixed (50-nodes, 30-flows, 120 pps) . 148

5.1 Loop in G . 161
5.2 Using SSLs and RSLs with SSC . 167
5.3 Using SSLs and RSLs with SSOC . 169
5.4 Viable Successor Set Dynamics . 171
5.5 SLR labeling . 178

vii

5.6 LSR labeling . 179
5.7 Labeling with SSDLs . 187
5.8 Random (100-nodes, 30-flows, 120 pps) . 196
5.9 Fixed (100-nodes, 30-flows, 120 pps) . 197
5.10 Random (50-nodes, 30-flows, 120 pps) . 198
5.11 Fixed (50-nodes, 30-flows, 120 pps) . 199

viii

List of Tables

2.1 Performance average over all pause times with 10-flows in a 50-node network
with nodes rebooting every 50-seconds . 54

2.2 Performance average over all pause times for 50 nodes network for 10-flows
and 30-flows (random) . 55

2.3 Performance average over all pause times for 100 nodes network for 10-flows
and 30-flows (random) . 55

2.4 Performance average over all pause times for 50-nodes and 100-nodes network
with 30-flows (fixed) . 56

3.1 Terminology used for FLR . 69
3.2 Performance average over all pause times for 50 nodes network for 10-flows

and 30-flows (random) . 98
3.3 Performance average over all pause times for 100 nodes network for 10-flows

and 30-flows (random) . 98
3.4 Performance average over all pause times for 50-nodes and 100-nodes network

with 30-flows (fixed) . 99

4.1 Performance average over all pause times for 50 nodes network for 10-flows
and 30-flows (random) . 138

4.2 Performance average over all pause times for 100 nodes network for 10-flows
and 30-flows (random) . 139

4.3 Performance average over all pause times for 50-nodes and 100-nodes network
with 30-flows (fixed) . 140

4.4 LVR - RREP statistics and success rate of RREQs in 100-nodes network with
30 fixed-flows . 143

4.5 LVR - RREP statistics and success rate of RREQs in 100-nodes network with
30 random-flows . 143

5.1 Performance average over all pause times for 50 nodes network for 10-flows
and 30-flows . 188

5.2 Performance average over all pause times for 100 nodes network for 10-flows
and 30-flows . 188

ix

5.3 Performance average over all pause times for 50-nodes and 100-nodes network
with 30-flows (fixed, long-lived) . 189

5.4 Local Repair statistics for 100 nodes network with 30-flows 193
5.5 Performance average over all pause times for bi-directional flows 194
5.6 Local Repair statistics for bi-directional flows 195

x

Abstract

Robust Loop-free On-demand Routing

in Ad hoc Networks

by

Hari Rangarajan

In this thesis, we explore new techniques for robust, efficient, loop-free on-demand routing in

Mobile Ad hoc Networks (MANETs) using the same information (i.e., topology information,

sequence numbers, etc.,) used in prior on-demand routing protocol proposals.

We provide new insights into the robustness of protocols based on destination-sequence

numbers when operating with node failures and loss of routing information, and present a new

destination-sequence number framework that works correctly even with failure conditions. We

also show how destination-sequence numbers can be manipulated as routing labels for improv-

ing performance, rather than being strictly treated as time-stamps.

We present two different routing approaches that exploit the topology information that

can be collected on-demand during the route request flood search. The first approach translates

topology information into labels that are then stored at nodes in strict ”lexicographic” ordering

along any successor path to a destination. Loop-freedom is maintained by allowing nodes to

only pick ”smaller” labels. The second approach maintains a list of topology information that

should not be trusted in-addition to the known path to a destination. Using the notion of trusted

topology, nodes can always make routing decisions only with the correct topology information,

which ensures loop-freedom.

We conclude our research with a new on-demand routing technique that exploits the

route request flood search process, which is an integral part of any on-demand routing protocol.

Without requiring any additional mechanisms or information, we use the uniqueness of route

requests to realize a on-demand routing framework. We, then, present extensions to the basic

framework to improve performance using more information that can be collected during the

flood search process.

Through extensive simulations, we show that all our new proposed approaches per-

form better than the current state-of-the-art MANET protocols prescribed by the IETF working

group.

To my mother

xiii

Acknowledgments

I believe that a lot of my life’s experiences both personal and professional had a

definite say in the shaping of this thesis. So, first, I would like to thank everyone who influenced

or contributed to my life in that regard – perhaps, they were destined to do so by the cosmic

balance of nature (or driven by an ad hoc sequence of events?).

Of these people, no least, I would have to start off by expressing my heart-felt grat-

itude towards my Adviser, Prof. J.J. Garcia-Luna-Aceves, who has always been an excellent

role-model to strive to emulate. I consider it as a great privilege to have been associated with

him and a great pleasure to learn from him. I would have to specially thank him for persisting

with me at times even as I went through my ”phases” in life. I will always be left wondering in

life if I could have gone on to finish without him as my adviser.

Next in line, I would have to thank my mother, who would rank as the single most

influential person in my life. She has been my best well-wisher and I’m very grateful for

everything that she has done for me. I would also like to thank my brother who has been around

here during the last year.

In the past years, I have had the opportunity to be associated with many people here

at UCSC. A limited list would feature Saro, Soumya, Ramesh, Venkatesh, Yu, Marcelo, Marco,

Marc, Wenyi, Zhenjiang, Ravindra, and Rahul; I’m sure I have learnt a thing or two about re-

search or life in general from them. I would also like to mention a special thanks to Vishwanath

Venkatraman for many conversations reflecting on life (and the PhD too, I think?). I’m defi-

nitely missing out many other people who did contribute significantly but I would still like to

xiv

thank them all if they believe that they should be on this list.

The text of this dissertation includes material that has been previously published [4,

26, 34, 14, 5, 15]. Prof. J.J. Garcia-Luna-Aceves, listed as the co-author in these publications

directed and supervised the thesis research that forms the basis for this dissertation.

This work was funded in part by the Baskin Chair of Computer Engineering at UCSC,

the National Science Foundation under Grant CNS-0435522, the UCOP CLC under grant SC-

05-33, and by the U.S. Army Research Office under grant No. W911NF-05-1-0246.

xv

Chapter 1

Introduction

A mobile ad hoc network (MANET) is characterized by a set of mobile nodes ca-

pable of communicating over wireless media and establishing a network without the need for

a pre-existing infrastructure. The routing protocol of a MANET enables nodes to deliver data

across multiple hops, and has received considerable attention from the research community

for more than two decades ([19, 13, 8, 25, 28, 29, 2]). Routing protocol design for a MANET

presents a unique challenge incontrast to wired networks. The fundamental design challenge for

a routing protocol in a MANET is the limited bandwidth offered by the wireless media which

necessitates the use of minimal control signalling to attain loop-free routing. In addition, the

dynamic characteristics of MANETs, coupled with the physical characteristics of the wireless

media which cannot guarantee reliable delivery, demand that routing protocols be robust (i.e.,

produce correct routing tables in a finite time) in the presence of node and link failures, network

partitions and re-constitutions, and nodes rejoining a network. Routing in MANETs can be

classified with two major approaches: Pro-active approaches maintain routing information for

1

all destinations, regardless of whether traffic exists for them. Reactive (on-demand) approaches

maintain routing information for only those destinations for which traffic exists, and rely on

flood search mechanisms to establish routes to “active” destinations. On-demand protocols are

very attractive in scenarios with high mobility, and traffic patterns in which source nodes pick a

few other nodes as destinations. All on-demand protocols attempt to maintain loop-free routing

tables, because routing loops could lead to excessive signaling overhead trying to repair loopy

routes. The three basic approaches used in on-demand protocols to eliminate loops are nodal

synchronization, sequence numbers, and source routing using topology information. Examples

of nodal synchronization include the temporally-ordered routing algorithm (TORA) [37], and

the Routing On-demand with Acyclic Multiple paths (ROAM) [36]. TORA uses a link-reversal

algorithm [6] to maintain one or more loop-free paths created with a query-reply process simi-

lar to that used in all on-demand routing protocols. To terminate the algorithm, TORA requires

the use of synchronized clocks. ROAM creates multiple paths similar to TORA and uses a

safe condition based on distances to pick loop-free successors. When no safe successors can

be found, ROAM requires synchronization spanning multiple hops. In general, protocols us-

ing nodal synchronization over one or more hops incur excessive overhead, and also require

guaranteed message delivery by the MAC layer, which may not be available in MANETs.

In this thesis, we propose different schemes for loop-free routing applied in the con-

text of on-demand routing protocols using sequence numbers and topology information. We

do not investigate nodal synchronization as we assume that MAC layers used in MANETs

(i.e.IEEE802.11 [35] may not be able to guarantee reliable message delivery. Our aim is to

minimize control signalling, while at the same time ensuring loop-freedom and robustness of

2

the routing protocol. The highlight of all proposed approaches, which we introduce in the next

sections, is that they only use the same information or less used in prior on-demand routing pro-

tocols. Sections 1.1 discusses related work in the area of on-demand routing protocols based on

destination sequence numbers. We illustrate the short-comings of current protocols, motivate

and list our contributions. Section 1.2 discusses on-demand routing protocols that use topol-

ogy information. We motivate and list our contributions that provide loop-free routing using

topology information without requiring source-routes. Section 1.3 motivates the need for an

on-demand routing protocol that can exploit the basic route search mechanism, and lists our

contributions. Chapter 6 presents our concluding remarks and discusses possible future work.

1.1 Destination Sequence numbers

Loops can be avoided in a routing protocol if nodes can determine the freshness of up-

dates received for a destination. Sequence numbers serving as time-stamps is a very well-known

approach in distributed systems to determine freshness. The Destination Sequenced Distance

Vector (DSDV) routing protocol [25] was the first MANET routing protocol that proposed the

use of a sequence number associated with each destination by which the updates could be time-

sequenced correctly. In DSDV, all nodes pro-actively send updates periodically to install correct

routes for themselves in the network.

The Adhoc On-demand Distance Vector (AODV) routing protocol [19] extended the

use of sequence numbers to establish loop-free routes to a destination on-demand. In AODV,

the sequence number carried in a route request (RREQ) elicits only fresher route replies (RREP)

3

with an equal or higher sequence number. Route errors (RERR) are sent unreliably, based on

the notion that increasing the destination sequence number invalidates the route entry of all

upstream nodes.

The Labeled Distance Routing (LDR) protocol [8] was recently proposed to improve

on the way in which AODV uses sequence numbers, so that destinations need to respond to

fewer RREQs. LDR is an on-demand routing protocol based on a dual invariant consisting of

destination sequence numbers and feasible distances [7]. A feasible distance in LDR roughly

corresponds to the smallest distance to a destination attained by a node for its current sequence

number for the destination. The destination sequence number is used to “reset” the distance to

a destination, i.e., to allow a node to accept a next hop that reported a distance larger than the

node’s feasible distance. Using feasible distances in LDR makes it more likely for nodes other

than the destination to resolve RREQs, which improves the performance significantly [8].

In Chapter 2, we focus on the use of per-destination sequence numbers to attain loop-

free routing in an on-demand routing protocol. So far, the research community has devoted

considerable attention to develop loop-free protocols for MANETs using destination-based se-

quence numbers. However, the robustness and efficiency of such protocols has not been well-

understood in MANETs, in which nodes have to delete old routing table information within

finite times to scale with increasing number of nodes, and also maintain correct routing proto-

col operation in the presence of failures and other abrupt changes despite using unreliable MAC

protocols. We provide new insight on the requirements for robust routing using destination

sequence numbers when nodes may delete routing state, and present a technique for nodes to

safely re-learn destination sequence numbers over an unreliable communication medium, after

4

reboots or deletion of routing table entries to save memory. Under such operating conditions,

we show that the way in which the Ad-hoc On-demand Distance Vector (AODV) protocol han-

dles destination-based sequence numbers can lead to looping of data packets, de-facto network

partitions, and counting to infinity.

We introduce a new framework for on-demand loop-free routing based on destination

sequence numbers that is robust and efficient in the presence of node failures and reboots,

unreliable message transmission with unbounded queueing delays, and the loss of routing state

at nodes. We apply our framework to AODV as an example of how robust sequence-number

handling can be attained without compromising the efficiency of the protocol. We call this fixed

version, AODV-RSN (AODV with Robust Sequence Numbering). Then, we attempt to extend

the basic robust framework with a technique to improve performance, in a fashion similar to

LDR. The key limitation with AODV, in which a node increases the stored sequence number

for a destintion after a link failure, is that it prevents responses from nodes that are closer to

the destination but have an older sequence number, even if they have a valid loop-free path to

the destination. Consequently, the likelihood that the destination itself must resolve a RREQ

is high, because the destination is the only node that can increase its own sequence number.

This effect has been documented recently by Chakeres and Klein-Berndt [1], who describe

a simplified version of AODV that eliminates sequence numbers in RREQs and requires the

destination to answer each RREQ. This version of AODV, called AODVjr, was shown to have

nearly the same performance as AODV in network scenarios of 25 and 50 nodes. The approach

we present, called the Sequence-number Window Routing (SWR) protocol, is a more efficient

instantiation of the framework based on sequence number windows, a technique that allows

5

per-destination sequence numbers to be ordered progressively along a successor path to the

destination. This allows more intermediate nodes to reply to route requests correctly avoiding

network-wide floods. AODV-RSN and SWR are compared via simulations with DSR, AODV

and Optimized Link State Routing (OLSR) [2] protocol using networks of 50 and 100 mobile

nodes. The results indicate that SWR is better than AODV on the average, while AODV-RSN’s

improved performance validates our claim on the correctness issues of AODV, and the necessity

for immediate participation of the routing protocol after a node reboot.

1.2 Topology Information

The characteristics of MANET and the need for flooding to establish routes to a des-

tination make the use of topology information in on-demand routing protocols very attractive.

Because topology information is collected when nodes find paths to chosen destinations, it is

possible to reduce the number of flood searches by taking advantage of stored topology infor-

mation, and paths can also be repaired locally after link failures using the same information.

Several routing schemes have been proposed for MANETs based on topology information. The

optimized link state routing (OLSR) protocol [2] reduces the number of nodes that need to for-

ward link-state updates, while other schemes communicate only partial topology information

corresponding to shortest-path trees [10]) or reduce the frequency with which link-state updates

are sent based on the distance to the sources of the updates [9]. However, none of these ap-

proaches prevent the creation of temporary routing loops when the “topology maps” stored at

different nodes are inconsistent.

6

DSR is a well-known known example of using path information on demand to avoid

looping in MANETs. DSR enforces loop-free routes to a destination by carrying the path tra-

versed in the RREQ and the reverse path is then used to source route data packets to the desti-

nation. After a link failure, reliable error updates are sent to the source, so that a new route can

be searched. The limitation with this approach is that data-packet headers must specify source

routes to avoid loops, which incurs additional processing overhead for each data packet. Packet

salvaging can be used in DSR to recover from link failures locally by re-routing data packets

along an alternative source route; however, this approach may result in the formation of tempo-

rary loops, and requires a mechanism to detect data packets flowing over those loops. Recently

proposed techniques [3, 21] attempt to improve the packet salvaging mechanism by using more

topology information, and re-route data packets safely along alternate paths, but their recovery

effectiveness is limited to the two-hop neighborhoods of nodes. An implicit source routing ap-

proach [12] has also been proposed to reduce the extra overhead of source routes in data packets

by carrying flow Id’s instead of the entire source route. However, this scheme still requires ad-

ditional per-packet processing of IP option headers, and loops formed are detected by using the

time-to-live (ttl) of the data packets.

OLIVE [43] was the first on-demand routing scheme based on link vectors (or equiv-

alently, path information) that allowed data packets to be forwarded based solely on their des-

tinations. Nodes collect topology information from the link vectors in route requests (RREQ)

and route replies (RREP), and the freshness of a link is indicated by means of link sequence

numbers. OLIVE leverages the partial topology information to send source-routed requests to

recover failures at intermediate nodes, but can only pick paths of equal or lower cost. After

7

a link break, a source node must exchange route errors reliably with all neighbors that use

the node as next hop to the destination. To cope with the possibility that route errors cannot

be exchanged reliably, OLIVE requires a node to discard a data packet received from a given

neighbor if the neighbor that sent the packet is in the node’s path to the packet’s destination.

AODV-PA [30] [16] collects partial topology information with RREQs and RREPs

like DSR, OLIVE and FLR do. Loop-freedom is based on the use of per-destination sequence

numbers to determine which distances to a given destination can be trusted. The Dynamic

MANET On-demand (DyMO) routing [38] was a recent routing framework proposal based on

destination sequence numbers, building on AODV, with the capability to add more features like

path accumulation on-demand. The limitation of this approach is that it does not take advantage

of path information to enforce loop-free routing. Accordingly, the performance of AODV-PA

is very similar to that of AODV, and path accumulation provides only slight improvements in

huge networks with many flows [16].

The Directed Incremental Routing (DIR) [4] protocol represents another approach to

collecting path information together with distances. A limitation of DIR is that it does not use

path information to “reset” distances when nodes reboot or delete invalid routing-table entries,

which can lead to loops in routing tables.

Using path information in an on-demand routing protocol offers an alternative to using

destination sequence numbers that must be frequently “reset” by the destinations, as well as

to synchronizing the routing-table update steps of several nodes, which has been shown to

incur even more overhead than reseting destination sequence numbers. However, none of the

on-demand routing protocols based on path information proposed to date are able to support

8

instantaneous loop-free routing when data packets are forwarded on a hop-by-hop basis using

only the addresses of their destinations. We propose two different approaches that use topology

information for their routing decisions. The first approach ignores the actual correctness of the

topology information, while the second maintains a notion of which topology information is

correct.

1.2.1 Paths as labels

In Chapter 3, we present the Feasible Label Routing (FLR) protocol, which is the

first on-demand routing protocol that uses path information only in its signaling for on-demand

routing, while supporting loop-free incremental forwarding of data packets when the header of

each data packet simply states the address of the intended destination. To present FLR, we ex-

tend the notion of “feasible distances” (used in the past in such protocols as the diffusing update

algorithm (DUAL) and more recently the labeled distance routing (LDR) protocol [8]) to the

concept of feasible labels, such that nodes are lexicographically ordered for a given destination

according to their paths to the destination. We introduce and prove sufficient conditions for

loop freedom based on feasible labels. FLR attains loop-freedom by lexicographically ordering

such feasible labels along a successor path to the destination. Simulation experiments in Qual-

net show that FLR and variants of FLR that use labels associated with destination sequence

numbers achieve better performance than AODV, DSR, AODV-PA, and OLSR, in terms of the

packet delivery ratio and average delivery latencies achieved, as well as the overhead incurred

in the network.

9

1.2.2 Paths with untrusted topology information

All prior topology-based schemes use information about the paths that can be used to

reach destinations, but do not use information about the links that cause nodes to change their

routes, and the inconsistency of information regarding links that cause rerouting decisions at

different nodes is what actually causes the formation of routing-table loops. In Chapter 4, we

introduce the Link Vector Routing (LVR) protocol for loop-free on-demand routing in ad hoc

networks. LVR differs from all prior routing protocols based on topology information in that

nodes communicate and store information about those links that should not be trusted when

rerouting decisions are made, in addition to the information about known links in the network.

LVR achieves loop-free hop-by-hop routing without requiring reliable communication among

neighbors, per-packet filtering, or source-routes or flow identifiers in data packets, as in prior

on-demand link-vector proposals. LVR operates using a very simple principle idea: As in prior

schemes (e.g., DSR, AODV-PA, FLR, OLIVE), routers use route requests to discover valid path

information and route replies to provide the requested path information to sources of data pack-

ets. However, LVR also uses route requests and route replies to disseminate information about

those links whose failure caused nodes to require rerouting and which should not be trusted

when repairing routes to destinations. We prove a new sufficient condition for loop-free rout-

ing based on this dissemination of path information, and show through extensive simulations

in Qualnet that the performance of LVR is far better than the performance of AODV, AODV-

PA, DSR, FLR and OLSR, in terms of the packet delivery ratio and average delivery latencies

achieved, as well as the overhead incurred in the network.

10

1.3 Source-Sequence numbers

A feature common to every on-demand routing protocols, including our protocols

based on destination-sequence number and topology information, is that they share the same

mechanism for searching and establishing routes. This proceeds in two distinct phases: During

the route search phase, the network is flooded with route requests (RREQ). Each RREQ is

uniquely labeled by its source by means of a source-sequenced label (SSL), which consists of

the identifier of the source and a source sequence number that is locally unique. SSLs prevent

any node from processing the same RREQ multiple times, and nodes effectively build a directed

acyclic graph (DAG) rooted at the source for a source-destination pair uniquely defined by the

SSL and the destination identifier. During the route establishment phase, RREQs received by

the destination or an intermediate node with routing state for the destination are answered with

route reply (RREP) messages that traverse the loop-free reverse paths along the DAG built in

the route-search phase. Each node receiving a RREP establishes or updates its routing state for

the destination specified in the RREP. This information is used for data forwarding and route

maintenance.

Interestingly, the design of on-demand routing protocols to date has been such that

the mechanisms used in the route-search phase to propagate RREQs are fairly independent of

the mechanisms used during the route-establishment phase to establish and update routing-table

entries for destinations. Clearly, SSLs are a necessity in any on-demand routing protocol for

the identification of RREQs and their efficient processing. Furthermore, the loop-free paths that

are built during the route-establishment phase must be part of the DAGs built during the route-

11

search phase based on SSLs. This begs the question of whether on-demand loop-free routing

can be attained using SSLs during both the route search and the route establishment phases of

the routing process.

In Chapter 5, we introduce the first routing framework based on source-sequenced

labels (SSLs). We show how to use the minimum required information in any on-demand

routing protocol (consisting of a unique (source, flooding identifier) pair carried in RREQs)

to realize SSLs that can be used to identify loop-free successors for destinations, without the

need for any other data (e.g., distance or path information). The labeling scheme is extended

to form Source-Sequenced Distance Labels (SSDL) by adding the distance (hop count) to the

destination to the SSL. The same scheme can be extended to other properties relating to a

destination, such as paths instead of distances. Using SSDLs, we present the first on-demand

loop-free routing protocol based on SSLs and distances. Using extensive simulation results, we

show that simple protocol instantiations of our new framework operating in scenarios with 50

and 100-nodes under different traffic patterns outperform AODV, DSR, and OLSR.

12

Chapter 2

Routing using destination sequence numbers

2.1 Introduction

The class of on-demand routing protocols based on destination sequence numbers

requires each node to store a strictly increasing sequence number for itself, and, in-addition, a

sequence number for each known destination node in the network that is learnt from updates

sent for the particular destination. Loop-freedom is ensured if nodes only process updates for a

destination that have a higher destination sequence number than the one stored. The Adhoc On-

demand Distance Vector (AODV) routing protocol [19] is the most popular on-demand routing

protocol based on this approach. Although several improvements haven been proposed based

on the use of destination sequence numbers, none of them delve deeper into the issues related

to the maintenance of stored sequence numbers when stored information is lost due to node

reboots or route table purges.

Bhargavan et al [24] identified a failure condition in AODV caused by the rebooting

13

of a node, and proposed the the use of the DELETE PERIOD as a safety condition for loop-

freedom in AODV in the presence of node reboots. The DELETE PERIOD is the maximum

time that a node can retain its successor for a route entry in the presence of unreliable commu-

nication, and is a property of the prevailing network conditions. The AODV specification uses

this timer for managing the state of the routing table related to destination sequence numbers.

Assuming that a node that reboots waits “long enough” before re-engaging in normal update

activity, as prescribed by Bhargavan et al [24], the use of destination-based sequence numbers

in AODV works correctly, as long as nodes maintain the last sequence number they learned for

a given destination. However, to make the scheme practical in large MANETs, nodes must be

allowed to delete old invalid routes after a finite time. Section 2.2 shows that AODV’s handling

of sequence numbers based on a DELETE PERIOD can lead to looping, de-facto partitions

and count-to-infinity behavior. Section 2.3 presents a set of necessary and sufficient conditions

for loop-freedom using destination sequence numbers. Previously defined conditions for des-

tination sequence numbers [25] are based on the assumption that either nodes never ”forget”

destination sequence numbers that they learn, even after reboots, or nodes are able to wait ”long

enough” before re-engaging in the route maintenance for a destination after losing routing state

for that destination. We present a new technique that allows nodes to re-learn (i.e., reset) desti-

nation sequence numbers after reboots or after deleting route entries. The basic idea of the safe

reset is to have the request from a node having no sequence number state to be answered by

the destination. However, to ensure that only the latest replies received from the destination are

processed, the node requesting a reset identifies a request with a strictly increasing identifier that

is carried in the reply, which helps sequence the latest replies over stale replies in the network.

14

Section 2.4 specifies a framework that provides a robust approach to on-demand

destination-based sequence numbering based on the sufficient conditions for loop-freedom in-

troduced in Section 2.3. We show that the framework is robust and correct (i.e., it is loop-free,

terminates, and converges) in the presence of node failures and reboots, unreliable message

delivery, and unbounded queuing delays. The framework eliminates the necessity for arbitrary

timer periods to maintain correctness and safety, while allowing nodes to both participate in

routing actions immediately after reboot and purge routing-table entries at any time. We il-

lustrate an example in which nodes re-learn sequence numbers for a destination after loss of

state.

Section 2.5 presents an instantiation of AODV, which we call AODV-RSN (for robust

sequence numbering) and which eliminates the problems with AODV outlined in Section 2.2.

In Section 2.6, we present a more efficient instantiation of the framework, the Sequence Number

Window Routing (SWR) protocol, which is based on the concept of creating sequence number

windows. First, we introduce a new sufficient condition for loop-free routing that allows a

sequence number to be treated as a label when assigning nodes a sequence number for a desti-

nation, without affecting the loop-freedom. The key idea in SWR is for a node to assign itself a

sequence number based on the destination sequence number advertised by the successor it is us-

ing to reach a destination and by those neighbors that currently use it as the next hop for the des-

tination. We present the motivation behind ordering sequence numbers progressively towards

a destination using sequence-number windows and illustrate how more intermediate nodes are

allowed to reply to route requests, instead of the destination (which is the pre-dominant case in

AODV). The modifications required in terms of control messages, conditions, and message han-

15

D

C B A

E
D

C B A

E

(a) (b)

Figure 2.1: Issues with DELETE PERIOD in AODV

dling are presented incrementally with respect to the basic framework. We analyze and prove

the correctness of SWR, and present an example of its operation. Section 2.7 shows through

simulations that the proposed new approach to the handling of sequence numbers, AODV-RSN,

does not impact AODV’s performance negatively, and allows nodes to participate in normal

routing activities much faster than AODV after reboots. Simulation results also show that SWR

performs on par or better than the other state-of-the-art MANET routing protocols (AODV, the

Dynamic Source Routing (DSR) protocol [13], and the Optimized Link State Routing (OLSR)

protocol [2]). The results also show the effectiveness of SWR’s local repair, which uses a one-

hop neighbor query in-contrast to AODV’s local repair mechanism, where intermediate nodes

can only perform a local-repair if they know the hop-count to the source, and must also be at a

minimum distance of four hops from the source. Section 2.8 provides our concluding remarks.

2.2 Sequence Numbering Problems in AODV

We address AODV’s problems with sequence numbering by way of examples assum-

ing the use of an unreliable MAC protocol similar to IEEE802.11 DCF [35].

16

In AODV, a node can lose its routing state (destination sequence number) for a desti-

nation in two ways: when a node reboots or after a node deletes a route entry to save memory.

We now discuss the problems associated with losing such a state in AODV.

2.2.1 Looping

Figure 2.1(a) shows an example directed acyclic successor graph (DASG) for a five-

node network running AODV with nodes A, B, C, and E having flows to destination D. The

nodes in the example have an active route entry with a valid destination sequence number for

D, and Figure 2.1(b) shows the network at a subsequent time with the physical connectivity

affected due to mobility. At this time, link E−D goes down, and links E−A and E−B come

up. Node E sends a RERR to advertise the unreachability of destination D, which propagates

to the upstream nodes along the directed acyclic graph for D.

Consider the case of ”unbounded” queueing delays or message loss. In the simplest

case, if the RERR is never delivered to C , then node E can send a RREQ for D after deleting its

destination sequence number, which happens after waiting for the DELETE PERIOD [19] to

expire. Nodes A or B can answer the RREQ resulting in a loop.

The AODV specification [19] defines a value for the DELETE PERIOD equal to K

times the value of the ACTIV E ROUTE TIMEOUT variable, with the recommended value

for K being five. However, the actual value of K is a property of the prevailing network condi-

tions and cannot be deduced accurately. If the parameter ’K’ is set too low, then it can result in

loops. On the other hand, if ’K’ is set too high, it can slow down the convergence of AODV or

aggravate the looping problem during reboots, which we discuss next.

17

2.2.2 De-Facto Partitions

A node rebooting after a failure loses state about all destination sequence numbers.

Assume that node E in our example of Figure 2.1(a) reboots and has to wait for a minimum

of DELETE PERIOD before it can participate in routing actions. Node E sends RERRs on

receiving data packets from C , which propagate to A. New RREQs generated by A for D

cannot reach D during E’s reboot wait time, because E has to drop all RREQs during that time.

Hence, the network appears to be partitioned, despite the physical links available in the network.

This limitation can be critical in sparsely connected networks when there are no alternate paths,

and can force nodes to choose sub-optimal paths for the duration of their flow, because routes

are not improved pro-actively. We note that nodes that are sources or destinations of flows after

a reboot are effectively partitioned from the network during the reboot wait period.

2.2.3 Counting to Infinity in AODV

The AODV specification of 2003 [19] recommends that nodes delete invalid route

entries after a finite time equal to the maximum elapsed time after which a node can still send

data packets to the next-hop specified in the routing table, called the DELETE PERIOD.

However, as we show below, this condition is not safe.

A DASG for destination D is shown in Figure 2.2(a). We assume that all nodes run

AODV correctly and have data for D at some point in time. The dotted node R between node C

and node X is used to indicate a set of one or more nodes that could be along the path. All nodes

are assumed to have sn1
D as the destination sequence number for D in their routing tables. We

consider path P= {Y,X, {R}, C,B,A} and we trace one of many sequences of events that can

18

B C X Y

e2

e1

sn(1) sn(1)

sn(1)
sn(1)

sn(1) sn(1)sn(1)

R

A
D

(a)

B C X Y

e2

e1

R

sn(1) sn(1) sn(1) sn(1) sn(1)

sn(1)
sn(2,invalid)

RERR

sn(−1,invalid)

A
D

(b)

B C X Y

e2

e1

R

sn(1) sn(1) sn(1) sn(1)

sn(1)
sn(−1,invalid)

RREQ (sn: −1)

RREP(sn: 1)

sn(1,valid)

sn(2,invalid)

A
D

(c)

Figure 2.2: AODV count-to-infinity example

cause counting to infinity for destination D. Assume that link e1 fails, which results in node D

being isolated from the connected component consisting of nodes A,B,C ,{R},X and Y . Now

A detects the unreachability of D within a finite time through either a link-layer notification

or HELLO messages. Node A invalidates the route to D, increments its sequence number for

destination D to sn2
D (hence, sn2

D > sn1
D), and sends a route error (RERR) to node B, which

may not be delivered. This sequence of events is represented in Figure 2.2(b).

After the above sequence of events, node A searches for a new route to D with sn2
D

19

as the required sequence number. However, destination D is unreachable and none of the other

nodes can satisfy the request, because their sequence numbers equal sn1
D. In our scenario, node

B eventually invalidates its route entry for destination D, given that node A sends RERRs to B

every time it receives a data packet for the invalid route to D.

Let t1 be the time after which node A receives no data packets from B, node A deletes

the invalid route for D with sn2
D at time tdelA

D

= t1+DELETE PERIOD. Node B invalidates

its route entry for destination D at a time t > t1, and notifies C of the unreachability of D

proceeding in the same fashion as the RERR exchange between A and B. This results in C

invalidating its routing entry for D. The nodes along path P learn about the unreachability of

node D as the RERRs are propagated.

Let ty be the time when Y invalidates its routing entry for D. At any time t′ < ty,

any route search for destination D with a sequence number snD > sn1
D cannot be answered by

any node in the network.

At a time treqAD
> tdelAD

, node A sends a RREQ with an invalid sequence number for

D. If at time trepY
D
< ty node Y receives the RREQ, then it sends a RREP for D with a sequence

number sn1
D, which can now be used by node A to create a routing entry for destination D with

sn1
D. This results in the formation of an undirected cycle, which is shown in Figure 2.2(c).

Similarly, once the DELETE PERIOD elapses, node B deletes its invalid entry for D after

attempting to find a route with sequence number sn2
D. A RREQ for D by node B with an

invalid sequence number can then be answered by node A with sn1
D. This effect cascades to

other nodes along the path, and counting-to-infinity occurs in this connected component. The

route lifetimes at each node can be kept alive by the constant flow of data packets for D that

20

either originate locally at the node or are forwarded along the undirected cycle.

The basic problem can be summarized as follows: A node A along a successor path

P to destination D should never delete its invalid route table entry for D before guaranteeing

that all its upstream nodes along path P have invalidated their active route entries for D.

We note that a similar counting-to-infinity scenario can occur when nodes reboot

after failures. On reboot, nodes running AODV wait for DELETE PERIOD to elapse before

engaging in routing operations; however, they forget their last-known sequence number for a

destination. Hence, a counting-to-infinity scenario can be constructed that involves having all

nodes along an upstream path rebooting.

In practice, counting-to-infinity and looping in AODV can be avoided by waiting

“long enough” before deleting invalid routes or rejoining normal operation after reboots. How-

ever, as the network size and its diameter change, what “long enough” means must also change.

Given that internodal coordination spanning multiple hops [7] incurs too much overhead and

that very long waiting periods are undesirable for protocol efficiency, a more elegant solution to

the counting-to-infinity and looping problems in the presence of routing-state loss is desirable,

which we present in the next section.

2.3 Loop-Freedom using Sequence numbers

2.3.1 Sufficient conditions

We assume that node A maintains a strictly increasing sequence number (snA
A) for

itself, and a sequence number snA
D and route cost dAD for a known destination node (D) in the

21

network. The last known sequence number and distance reported by neighbor B for destination

D is stored by A as snA
DB and dADB , respectively. Let dA?

D be the smallest value of dAD assigned

for a sequence number snA
D at node A. The link cost from node A to neighbor B is denoted by

lcAB .

Sequence Number Condition (SNC): Node A can make node B its successor for des-

tination D after processing an input event if (snA
D < snA

DB) or (snA
D = snA

DB ∧ dA?
D ≥

dADB + lcAB). If no neighbor satisfies one of the above conditions, then node A must keep its

current successor if it has any.

The proof that SNC can be used to enforce loop freedom is presented in [25] under

the implicit assumption that nodes never ”forget” the last sequence numbers they learn for a

given destination and that no node ever forgets a sequence number that it maintains for itself,

even after reboots.

2.3.2 Reseting destination sequence numbers

We present a new technique for nodes that delete or lose their sequence numbers for

a destination to re-learn the current destination sequence number safely. We make the generic

assumption that a node issues a query carrying an identifier (ID), and a reply to the query is

issued by the destination carrying the same identifier (ID) after incrementing its own sequence

number.

The following additional state is maintained at a node A: (i) A strictly increasing

identifier (IDA) used to identify queries that are used for reseting destination sequence num-

bers, and (ii) the first issued query identifier (FIDA
D) for a destination D at a time after which

22

the sequence number for that destination is no longer known. The FIDA
D for destination D

is set to ∞ if no queries have been sent for this destination after the last reboot or loss of the

destination sequence number; otherwise, it is set to the ID of the first issued query.

On a reboot, node A sets IDA higher than the last used IDA, and for every destination

FIDA
D is set to∞. Note that the variable IDA is of local significance. The only requirement is

that it be strictly increasing even after reboots, and can be derived from a real-time clock.

Sequence Number Reset Condition (SRC): If node A deletes or loses its previously

known highest destination sequence number for D, it can safely update its routing-table entry

for D with a reply issued by node D carrying an identifier ID, if ID ≥ FIDA
D.

Theorem 1. If a node uses SRC to obtain the sequence number for a destination, it is true that

the sequence number stored at the node for that destination is strictly increasing with time.

Proof. Assume that tr is the last time that node A lost sequence number state for destination D,

for which snA
D(tr) ≤ snD

D(tr). We now show that when node A assigns itself a new sequence

number for destination D at any time t > tr, it is true that snA
D(t) > snA

D(tr). At time t0 > tr

when node A participates, it is true that IDA(t0) > IDA(tr), and FIDA
D(t0) = IDA(t0).

To apply SRC at time t, node A must have received a reply issued at time t2 carrying ID,

in response to a query issued at a time t1 ≥ t0, such that ID = IDA(t1) ≥ IDA(t0) ≥

FIDA
D(t0); where t1 < t2 < t. Because the destination must have incremented snD

D in the

reply issued at time t2 in response to query ID, it must be true that snD
D(t2) > snD

D(tr). Hence,

replies processed satisfying SRC will always ensure that the destination sequence number stored

for a node is strictly increasing with time.

23

2.4 On-demand Routing Framework

We use the same terminology introduced in Section 2.3 to present the on-demand

routing framework based on destination sequence numbers.

2.4.1 Control Messages

We assume a generic control message framework consisting of route request (RREQ),

route reply (RREP), and route error (RERR) messages similar to that of previous on-demand

routing protocols.

A RREQ consists of the tuple {dst, src, rreqid, (src1, rreqid1), (src2, rreqid2), ...,

(srcn, rreqidn), msndst, f lags}. The field src denotes the identifier of the source that is

seeking a path to the destination (dst), rreqid is a request identifier that along with the source

address (src) represents an unique RREQ generated by the source for destination dst. The

rreqid is set from the current IDA stored at the node. The set of pairs (srci, rreqidi), where

i ∈ {1, 2, ..., n} are appended to the RREQ by relaying nodes (src1, src2, ..., srcn) that have

no valid sequence-number for destination dst, and must re-learn it safely when they are part of

this computation. msndst is the maximum of the destination sequence numbers along the path

traversed by this RREQ, and flags carries control bits. One control bit used is the R-bit that is

set when the RREQ must be answered only by the destination.

A RREP consists of the tuple {dst, (src, rreqid), (src1, rreqid1), (src2, rreqid2), ...,

(srcn, rreqidn), sndst, ddst, ttl, f lags}. The field ttl states the lifetime of the route at the

node relaying the RREP, rreqid is carried in the RREP to forward it along the reverse path

24

to the source using information cached for the RREQ which is uniquely identified by the pair

(src, rreqid). The set of pairs (srci, rreqidi), where i ∈ {1, ..., n}, are copied from the

RREQ when the RREP is generated by the destination. It is necessary to carry the pairs for

all the relaying nodes because SRC needs to be applied individually at each node to do a safe

sequence-number reset for the destination. sndst is the destination sequence number stored at

the relaying hop, ddst is the distance to the destination at the relaying hop, and flags contains

the ’D’ bit, which may be set if the destination originates the RREP.

The RERR is the tuple {orig, unreachdests}, where orig denotes the node origi-

nating the route errors, and unreachdests is the list of destinations that are not reachable at

orig.

2.4.2 Information Stored

Node Amaintains a strictly increasing request identifier IDA for the issuing of RREQs,

and a sequence number for itself snA
A. The routing-table entry at node A for destination D in-

cludes the current sequence number (snA
D), the current route cost (dAD), the successor (sAD), and

the state of the route (rtAD), which can be valid or invalid. If no routing entry exists at node A

for destination D, then the current sequence number is considered invalid (i.e., snA
D = −1),

and cannot be used to check if loop-free conditions are satisfied. For unknown routing entries, a

first used request identifier (FIDA
D) is stored to keep track of the rreqid of the RREQ that was

issued after the last reboot or state loss. The FIDA
D is set to∞ after losing the sequence num-

ber for destination D or after a reboot. A cache maintains a list of RREQs identified by their

(source, rreqid) pairs. For each cached pair, a corresponding previous hop-address is stored.

25

2.4.3 Generation of Sequence Numbers

Nodes must generate their destination-sequence numbers from a 64-bit real-time clock.

This method was proposed in LDR [8], and is necessary to prevent loops that can be caused

when a destination reboots and cycles to a previously used sequence number. The request iden-

tifiers (IDA) must be similarly derived from a real-time clock. This is essential because the

node loses its state for the last used request identifier when it reboots and participates immedi-

ately in the routing process for a destination. If previously used request identifiers are repeated

in the RREQs, they are not forwarded and no RREQs reach the destination. We note that

this scheme should be applied to other ’soft-state’ protocols like the Dynamic Source Routing

(DSR) [13] protocol or any on-demand routing protocol that performs route searches using the

(source, rreqid) pair.

2.4.4 Conditions

Based on the previously defined state information stored at each node and the control

messaging, we define the following conditions for on-demand routing. The superscripts req

and rep are used for variables included in a RREQ and RREP, respectively.

ASC: (Accept Sequence-number Condition). When node A receives a RREP from node B for

destination D, then node A sets sAD ← B if (snA
D < snrep

D) or (snA
D = snrep

D) ∧ (dAD ≥

drepD + lcAB). If snA
D = −1, then node A should accept a RREP only if there exists a

pair (src, rreqid) ∈ RREP, such that src = A ∧ rreqid ≥ FIDA
D, and Drep

D = 1 (i.e.,

generated by the destination).

26

SSC: (Start Sequence-number Condition). Node I can issue a RREP responding to a RREQ

for destination D in the following two cases: (a) I 6= D, I has an active route to D,

snI
D > snreq

D , and Rreq
D = 0, or (b) I = D. For case (b), if msnreq

D = snD
D or Rreq

D = 1,

node D increments snD
D by one. If Rreq

D = 1, it must set Drep
D = 1.

MSC: (Maximum Sequence-number Condition). If node A relays a RREP for destination D,

it sets snrep
D ← snA

D. The relayed RREP must not change the value of Drep
D . Node A

relays a RREQ for destination D only if A has not previously processed this RREQ and

sets msnreq
D = max{msnreq

D , snA
D}. If snA

D = −1 or Rreq
D = 1, then it sets Rreq

D = 1 in the

relayed request.

USC: (Update Sequence-number Condition). If node A must change sAD, it sets dAD ← ∞,

increments IDA, and sends a RREQ carrying msnreq
D =snA

D.

RSC: (Reset Sequence number Condition). If node A has no route entry for D (i.e., snA
D =

−1) then it must always set Rreq
D = 1 in any RREQ originated or relayed. When relaying a

RREQ, the node increments IDA and appends the pair (src = A, rreqid = IDA) to the

RREQ. If FIDA
D is∞, then it sets FIDA

D ← IDA.

2.4.5 Basic Route Operations

2.4.5.1 Node states

For a destination, a node is said to be active for a computation (A, IDA) if it is the

source of a RREQ identified by (src = A, rreqid = IDA). A node is engaged in a RREQ

computation (A, IDA) by caching the corresponding previous hop address. Otherwise, the

27

node is passive.

At any given time, a node can be active for at most one RREQ for the same destina-

tion. The RREQ (A, IDA) terminates when either node A attains an acceptable route reply for

destination D or the timer for its RREQ expires. A node may be engaged in multiple RREQs

for the same destination, but relays a RREQ (A, IDA) only once by caching the pair it forwards.

2.4.6 Message Handling

2.4.6.1 Route Requests

Node A becomes active for a RREQ (A, IDA) when it has data packets to send for

destination D, but no active valid route entry. RREQ’s are issued as per RSC and USC. RREQ’s

issued by the source can have increasing ttl’s controlled by the IP header or by additional means

to support expanding ring searches. For every active RREQ computation, a timer is setup as

follows: RREQ timer← (2.ttl.latency) (where ttl is the time-to-live of the broadcast flood and

latency is the estimated per-hop latency of the network). If node A receives no RREP after

the expiry of its timer for RREQ (A, IDA) for destination D, it sends a new RREQ with an

increased ttl. If node A does not receive a RREP for destination D after a number of attempts,

a failure is reported to the upper layer.

When node B relays a RREQ (A, IDA), it caches the pair (A, IDA) and the corre-

sponding previous hop (A). The RREQ is relayed in accordance with MSC and RSC. Node B

is then engaged in this computation (A, IDA).

28

2.4.6.2 Route Replies

A RREP is generated in response to a RREQ (A, IDA) by node I (which can be D)

if SSC is satisfied.

RREPs that satisfy ASC are processed as per Section 2.4.6.3. The RREP identified

by (A, IDA) is relayed along the reverse path using cached entries for (A, IDA) and follows

MSC.

2.4.6.3 Updating Routing Tables

After node A accepts a RREP rep for destination D from neighbor B that satisfies

ASC, node A updates its routing-table entry for D as follows: sAD←B, snA
D ← snrep

D , and

dAD ← drepD + lcAB . The ttl for a route entry is set to ttlrepD , and the RREP is relayed with the

time to live for the destination.

2.4.6.4 Routing Table Maintenance and Route Errors

Node A invalidates a route entry for destination D with S as the next hop, in one of the

following ways: (i) No data packet is forwarded using this route entry for active route timeout

seconds (the time after which a route-entry expires); (ii) A link-failure notification for the next

hop S is received; or (iii) A RERR is received, which indicates that D is no longer reachable

through S. A node A invalidating an entry performs the following steps: It sets rtAD = invalid,

sAD ← φ, and dAD ← ∞. A route entry with state rtAD = invalid can be purged at any time to

save memory. For cases (ii) and (iii), after determining the set of destinations affected by this

event, node A sends a RERR to all the predecessors (either as a broadcast or separate unicasts).

29

DBAG
SN:1

SN:? SN:?

SN:2
RREQ[(A,1) (B,1)]

RREP[(A,1) (B,1), SN:2]

P1

P2

DBAG

RREQ[(A,2) (B,2)]

SN:2

SN:3

RREP[(A,2) (B,2), SN:3]

P1

P2

SN:3SN:3

RREP[(A,1) (B,1), SN:2]

Figure 2.3: Re-learning sequence numbers safely after losing state

2.4.6.5 Routing Table Maintenance

A node can delete its routing table entry for a destination at any time, and is not

required to store the destination sequence number for arbitrary periods of time to ensure correct

protocol operation.

2.4.6.6 Reboots

On a reboot, a node can participate in the routing protocol activities without having to

wait for any arbitrary periods of time. A node sends RERRs in response to data packets received

and intended for nodes other than itself, until routes are re-established.

30

2.4.7 Example

Figure 2.3 shows the following sequence of events in a network when nodes lose state

routing information about a node and attempt to re-learn it using the rules of the framework.

Assume that at time t, nodes A and B, and the nodes in graph G form a part of the

DASG for destination D and all of them have stored a sequence number of one for D. At time

t1>t, nodes A and B lose their route entry state (denoted by SN:? in the figure) for D, and node

A issues a RREQ with a pair (A, 1) and the R-bit set. Node B relays the RREQ after appending

(B, 1) to the list. Node A and B set their respective FIDA
D and FIDB

D to 1. Assume that the

RREQ traversing path P2 reaches D. Node D initiates a RREP with an increased snD
D = 2,

D-bit set, and the list of pairs [(A, 1), (B, 1)]. Let node A’s RREQ timer expire because the

RREP traversing the reverse path P2 is delayed, and node A issues a new RREQ (A, 2) which

is relayed by B with (B, 2). Assume that this RREQ traverses the path P1 and reaches D. A

RREP is generated by D with an increased snD
D = 3, D-bit set and the pairs [(A, 2)(B, 2)]. The

RREP is received by nodes B and A, and they update their routing table entries for D because

SRC is satisfied and set snA
D, and snB

D to 3. If node B loses its state again at a time t2 > t1, it

will not process the old delayed RREP with the D-bit set along path P2. This is because node

B sets FIDB
D to ∞ after losing state, or if node B issued a new RREQ at some time greater

than t2 then FIDB
D > 2, and the RREP carrying the pair (B, 1) cannot be accepted. Hence,

node B avoids re-learning old sequence numbers for destination D from stale RREPs, and the

ordering of sequence numbers along the DASG for D is strictly maintained at all times.

31

2.4.8 Analysis

Theorem 2. If nodes use the rules of the framework, then they always maintain a strictly in-

creasing sequence number for a destination even after state loss.

Proof. The conditions for the framework follow the same rules as discussed in section 2.3.2.

The RREQ with R-bit set serves as a query and the RREP with D-bit set serves as the reply

tagged by the destination. For a node A, the strictly increasing request identifier IDA is used

for tagging the RREQs and is carried in the RREPs generated by the destination. A FIDA
D is

maintained to keep track of the identifier of the first issued RREQ. ASC encompasses the SRC

condition when processing RREPs for a destination with no entry. A RREP relayed from the

destination will always carry the same or a higher destination sequence number. Hence, from

the same argument as in Theorem 1, this proof is direct.

Theorem 3. The framework ensures that if a path P={nk, ..., n1} exists at some point in time

as defined by the successor entries of the nodes along the path, it is true that snni
n1
<sn

ni−1
n1 or

snni
n1
=sn

ni−1
n1 ∧ dni

n1
> d

ni−1
n1 , for i ∈ {2, k}.

Proof. For path P to exist at a given time t, it must be true that all nodes in P have a valid

successor. Node ni can make ni−1 its successor when it receives a RREP from ni−1, carrying

snrep
n1 = sn

ni−1
n1 and drepn1 =d

ni−1
n1 . There are two possible cases of ASC: Case (i), node ni has a

valid snni
n1

and must follow SNC to accept the RREP. It must be true that snni
n1
<snrep

n1 , or snrep
n1 =

snni
n1
∧ drepn1 +lcni

ni−1
≤dni

n1
. After updating the route entry, it is still true that snni

n1
=sn

ni−1
n1 ∧

dni
n1
>d

ni−1
n1 . This cannot affect a predecessor ni+1 because snni

n1
only increases or remains the

same with decreased dni
n1

. Case (ii), node ni has no valid snni
n1

and it uses SRC to accept the

32

RREP. After node ni updates its routing table, it is direct that snni
n1
= snrep

n1 ∧ d
ni
n1
>drepn1 , because

link costs are greater than zero. Also, from Theorem 2, node ni must have a higher snni
n1

than it

previously reported in its RREPs before time t to a predecessor ni+1, and at time t, it must be

true that snni+1
n1 < snni

n1
. Hence, if path P exists at time t, every node ni, where i ∈ {2, k} must

have accepted a RREP following one of the two cases, and therefore, the theorem is true.

Theorem 4. At any instant, the framework is loop-free.

Proof. This proof is direct from the proof of SNC [25] because Theorem 3 shows that the

framework maintains an ordering of fresher sequence numbers or equal sequence numbers with

decreasing distances along any successor path to the destination.

Theorem 5. In a connected component, all nodes partitioned from a destination will invalidate

their routing entries for that destination within a finite time

Proof. Consider a connected component G in which all nodes are partitioned from destination

D. If any node n ∈ G has an active route for D, it must be true that a DASG for destination

D must exist in G. Assume that at time t, the destination D is partitioned from the set of nodes

n ∈ G. By default RERR propogation, all nodes in the DASG should receive a RERR in

finite time, say tterm > t and invalidate their routing entries. We have to prove that a node

never re-learns a route from its upstream nodes in the DASG in the presence of link failures

and node state loss (which will cause cyclic propogation of RERRs). Let tlast > t be the time

when destination D initiated the final RREP with D-bit set. At a time tproc > tlast, all RREPs

initiated with a D-bit must have been processed at the sources that issued the corresponding

RREQs. At any time later than tproc, there are two cases by which any node n ∈ G can learn

33

a route for destination D: Case (i), a RREP with a D-bit set, which is however not possible

as the destination is partitioned and all old RREPs have been processed. Case (ii), node n

can receive a RREP from a neighbor A ∈ G satisfying SNC. However, neighbor A cannot be

upstream of n in the DASG, because it is loop-free at every instant (Theorem 4). Hence, nodes

can only switch to successor nodes that are downstream in the DASG. So, assuming finite

message time, the default propogation of RERR messages will reach all nodes in the DASG

without going through a cycle, and all nodes will invalidate their routing entries a finite time

after tterm >tproc >t.

Theorem 6. In an error-free stable connected network, a source will establish a route to a

destination in finite time.

Proof. This proof of convergence is similar to the one for LDR [8] (pp.60, Theorem 5) consid-

ering just the cases with sequence numbers. A RREQ traverses a path P , and carries a msn that

will be the highest of all the destination sequence numbers stored at the nodes. A RREP can

only be generated by a node storing a higher sequence number or the destination itself. Hence,

the RREP must satisfy ASC at all the nodes which relay the RREP along the reverse path. If

any node along the path has a higher sequence number than the one carried in the RREP, then it

must have learned a better route, but can still relay the RREP. A node relaying a RREQ with the

R-bit set is equivalent to relaying the RREQ with a msn set to the highest known destination

sequence number in the network (i.e., the one stored at the destination). The rest of the details

are identical because a RREQ with R-bit set generates a RREP with the highest sequence num-

ber and D-bit set which will be acceptable at all nodes relaying the RREP along the reverse

34

path.

2.5 AODV with Robust Sequence Numbering

We present a modification to the way in which destination sequence numbers are man-

aged in AODV as an example of our framework, and call it AODV-RSN (for robust sequence

numbering). In a nutshell, in AODV-RSN, the time period DELETE PERIOD is eliminated

and a routing-table entry can be deleted without the necessity to wait for any arbitrary time pe-

riod. Nodes can participate in routing actions immediately after a reboot. We note the necessary

changes in the control signalling and the information maintained at each node with respect to

AODV [19].

2.5.1 Control Message modifications

The following changes to the AODV specification are required for realizing AODV-

RSN. We utilize the ’unknown sequence number’ U-bit of the RREQ, which is equivalent to

the R-bit in the framework specification. The RREP requires the addition of a new ’Destination

Initiated Reply’ D-bit (which is borrowed from the reserved 13-bits), and a 64-bit field for

carrying the request identifier rreqid. The parameters stored in the routing table do not require

any modifications. The additional (source, rreqid) pairs in both RREQs and RREPs must be

carried in extra headers.

35

2.5.2 Stored Information

For each RREQ that a node processes, it caches the (source, rreqid) pair and the

address of the neighbor that transmitted the RREQ. The node stores a First Issued Identifier

(FID) for every known destination without a routing-table entry.

2.5.3 RREPs and RREQs

RSC and USC must be followed when RREQs are issued or relayed and the informa-

tion relayed in RREQs and RREPs must adhere to MSC.

We note that the AODV specification requires that nodes invalidate their routing table

entries by incrementing the corresponding destination sequence number. Intermediate RREPs

are generated if the RREQ carries a sequence number less than that stored at the node. This

differs from our framework specification, and in AODV-RSN only the destination can alter its

sequence number. This is because of the modified routing table maintenance and the SSC. A

RREQ must carry the pair (src, rreqid) and the pairs (srci, rreqidi), where i ∈ {1, ..., n}, of

relay nodes that have no routing entries for the corresponding destination. The RREP generated

in response to a RREQ by the destination must carry the entire set of (source, rreqid) pairs along

with the D-bit set, and must be relayed hop-by-hop with this information unchanged.

The reverse hop cached for the (source, rreqid) pair and the relaying rules are nec-

essary to relay the RREP along the same reverse path. This is a necessary condition for the

convergence of the protocol. If the more recent specification for AODV [30] is used, then the

reverse hop caching rules for relaying RREQs and RREPs are not required because the RREQs

and RREPs carry the path traversed.

36

2.5.4 Reverse Routes

A RREQ carrying the sequence number for the source can be considered as equivalent

to a RREP for the source. However, to satisfy ASC, such a RREQ can only be accepted if a

node has previous knowledge of the destination sequence number for this source. Otherwise,

it has to initiate a RREQ using the standard mechanism to re-learn the sequence number of the

source.

2.6 Sequence Number Window Routing Protocol

2.6.1 Sufficient conditions for loop-freedom using sequence number labels

In the past, loop-free routing approaches based on destination sequence numbers have

relied on the premise that a sequence number serves the purpose of time-stamping an update,

and thus accepting the update for a destination with the latest sequence number maintains loop-

freedom. This is the approach (based on SNC) that has been used in the past for loop-free

routing based on destination sequence numbers ([19], [25], [29]). Mosko and Garcia-Luna-

Aceves [27] propose the use of label sets that allows nodes to re-use the last known sequence

number. However, when no new unique labels can be found from the set, a new updated se-

quence number has to be requested from the destination.

Rather than considering sequence numbers as time-stamps, we model the sequence

numbers of a destination as a finite label space from [0, . . . , 2n−1] in which n is the number of

bits allocated for storing the sequence number. By doing so, the problem of maintaining loop-

freedom using sequence numbers reduces to a case of assigning destination sequence numbers

37

as labels for a destination at each node along the successor path. Following this approach, we

augment SNC with the following sufficient condition, which allows nodes to label themselves

with a sequence number for a destination without creating loops.

Sequence Label Condition (SLC): Let RsnA
D denote the sequence number for desti-

nation D that was last reported by node A in an update to its neighbors. When A makes B its

successor for destination D after processing an input event that satisfies snA
D < snA

DB , node A

can assign (label) itself a destination sequence number that satisfies RsnA
D < snA

D ≤ snA
DB .

Theorem 7. Using SNC for choosing successors and SLC for updating sequence numbers at

nodes cannot create loops if no node ever forgets the largest sequence number it learns for a

destination.

Proof. The proof follows from the fact that SNC is sufficient to enforce loop freedom if snni
n1

<

sn
ni−1
n1 , or snni

n1
= sn

ni−1
n1 ∧ dni

n1
> d

ni−1
n1 , for i ∈ {2, k} along any successor path P =

{nk, . . . , n1} to destination n1.

For path P to exist at a given time t, it must be true that all nodes in P have a

successor. Node ni applies SLC before making ni−1 its successor if snni
n1
<snni

n1ni−1
, and it

updates its route entry for n1 to one of these cases: (i) snni
n1
<snni

n1ni−1
, or (ii) snni

n1
=snni

n1ni−1

∧ dni
n1
>dni

n1ni−1
. At any later time, snni−1

n1 can only increase or remain the same with non-

increasing d
ni−1
n1 . In both cases, snni

n1
> Rsnni

n1
. If a neighbor node ni+1 is using node ni as

its successor or applies SLC to update its route entry before switching to node ni, it can only

set itself a label snni+1
n1 ≤ sn

ni+1
n1ni ≤ Rsnni

n1
. Therefore, it is true when node ni applies SLC

that snni+1
n1 <snni

n1
, and the ordering along path P is maintained. If SNC is used, and node

38

RREP

100 100 100 100 100

RREQ

10 100

EDCBA

(a) AODV - Sequence numbers as absolute time stamps

C D E

100100100100100

Z

101101101

101

101

BA

(b) AODV - On Route Failure

Figure 2.4: Sequence number assignment in AODV

ni makes ni−1 as successor when snni
n1
=sn

ni−1
n1 and dni

n1
≥dni

n1ni−1
+lcni

ni−1
, the ordering is still

maintained. Hence, the theorem is true.

2.6.2 Sequence Number Windows

SLC allows nodes to assign themselves a destination sequence number smaller than

the latest destination sequence number received in an update. The only requirement is that the

node chooses a new sequence number that is greater than the last sequence number it reported

to its neighbor nodes for this destination.

In past approaches like AODV, a node updates itself to the latest destination sequence

number reported in a control message. However, this results in the destination node being the

only one that can resolve most RREQs. For example, Figure 2.4 (a) shows a five-node network

39

topology. Node A has an invalid route to E with a sequence number snE
D = 10. Destination

E has a sequence number snE
E = 100. Node A trying to establish a route to E sends a RREQ

that is answered by the destination E, and the RREP carries snrep
E = 100. Nodes B,C, and D

along A’s successor path update their destination sequence numbers for E to 100. Now, node

B fails and an alternate path through node Z exists at a later time as shown in Figure 2.4 (b).

Node A attempts to re-establish its route to E. Node A’s RREQ carries a increased sequence

number snreq
E = 101, which prevents any of the nodes along the path ZCD from replying, even

though nodes C and D have a valid active route. Eventually, the RREQ reaches the destination

E, which now responds with a increased sequence number snE
E = 101 and the successor path

ZCD from A to E is established.

By allowing a progressive ordering of the sequence numbers, it is possible to expe-

dite route recovery and reduce control overhead. We introduce the Sequence Number Window

(SNW) as a tool to achieve this type of ordering. Figure 2.5 (b) illustrates a sequence number

window between node A and E in the interval [10, ..., 100] assuming an initial configuration

where nodes B,C, and D have no routes for E. Nodes label themselves with sequence numbers

smaller than the latest known sequence number, which amounts to distributing the sequence

numbers inside the window while maintaining the ordering. Figure 2.5 (b) illustrates the ben-

efits of distributing sequence numbers inside a window compared to AODV’s approach. As in

the previous example, node B fails, and node A obtains a reply from node C when it attempts

to obtain a new path to E, because A’s increased sequence number in the request snreq
E = 11

can be satisfied by node C . Node Z is assumed to have a valid sequence number in the range

1 ≤ snZ
E < 60. With on-demand routing protocols that resort to expanding ring searches, this

40

10 40 60 80

RREP

100

RREQ

10 100

EDCBA

(a) Window of Sequence numbers

A B C D E

100

Z

10 40 60 80

1 < sn < 60

(b) Fast recovery on route failure

Figure 2.5: Sequence number windows

scheme enables more nodes with active routes to E to respond.

2.6.3 Conditions

SWR augments the rules of our basic framework with a condition for detecting the

boundary of windows.

WBC: (Window Boundary Condition). If node A receives a RREQ for destination D and

snA
D > msnreq

D then node A sets the window count wc to 1, otherwise it increments wc by

1.

WBC allows nodes relaying a RREQ to determine distributedly the start and end of

sequence number windows, and the number of hops spanned by the window. A window count

41

of one indicates the beginning of a new window and signals the end of a previous sequence

number window (except at the source, where the window can only begin). The window count

indicates the number of nodes over which the current sequence number window is being built.

2.6.4 Additional Information and Control Messages

A node that processes a RREQ must cache the RREQ identifier given by (source, rre-

qid), and an additional tuple consisting of (msn,wc, reset). The parameter msn is copied from

the RREQ, wc is the window count used to keep state for creating sequence number windows

in a distributed fashion, and reset is used to decide when updating routing tables whether the

node must update to the sequence number carried in the reply. The reset copied from the R-bit

of the RREQ allows nodes to determine locally whether they are part of a sequence number

window being constructed, or if they have to update themselves to the highest sequence number

to maintain the ordering along the path being created. At a node B that has cached a RREQ

(A, IDA), we refer to these entries as msnB
(A,IDA), etc,.

RREQs carry an additional window count, wc, which is used for identifying the num-

ber of hops over which the distributed sequence number windows extend. RREPs and RERRs

do not require any changes.

2.6.5 Message Handling

2.6.5.1 Initiating RREQs

When node A initiates a RREQ req on a computation (A, IDA) for destination D, it

sets wcreqD ← 1.

42

2.6.5.2 Relaying RREQs

A node relaying a RREQ calculates wc following WBC. The new value of wc, msnreq
D ,

along with reset← Rreq
D are cached for the RREQ computation.

2.6.5.3 Initiating RREPs

If the destination D receives a RREQ req such that Rreq
D = 0, and msnreq

D = snD
D, it

increments snD
D by a parameter dstSeqInc before issuing the RREP.

A linear-increment scheme with a pre-configured dstSeqInc parameter should suf-

fice for most network configurations. However, performance can be improved by using adaptive-

increment schemes that derive dstSeqInc as a function of the prevailing network conditions

(i.e., number of RREQs received within a time interval).

2.6.5.4 Updating Route Entries

Node A updates its routing information when it accepts a RREP {D, S,IDS , sn
rep
D ,

ttl, drepD ,D} from neighbor B. Node A calculates snadj
D after retrieving the values of msnA

(S,IDS)

and wcA(S,IDS)
from the cache for the relayed RREQ (S, IDS).

snadj
D = snrep

D − b
snrep

D −msnA
(S,IDS)

wcA(S,IDS) + 1
c (2.1)

Node A updates its routing table entry for D according to its current state (rtAD) as

follows:

43

Case (a): If rtAD = φ ∨ resetA(S,IDS)
= 1, then

snA
D ← snrep

D (2.2)

For cases (b), and (c), rtAD can be valid or invalid, and resetA(S,IDS)
must be 0.

Case (b): If snrep
D > snA

D, then

snA
D ←



















snadj
D if msnA

(S,IDS)
≥ snA

D

snA
D + 1 otherwise

(2.3)

Case (c): If snA
D=snrep

D , and dAD≥d
rep
D + lcAB , then snA

D is not changed.

If the route reply was used to update the routing table sequence number entry, then

node A sets sAD ← B, and dAD ← drepD + lcAB .

2.6.6 Local Route Repair

To take advantage of the progressive ordering of sequence numbers as illustrated in

Section 2.6.2, SWR uses a local repair mechanism to avoid informing the source of the failure

of a route. When an intermediate node I experiences a link failure towards the next hop for a

destination, it will send a RREQ as per USC setting ttl ← 1, and RREQ expiry timer ←

2.ttl.latency. This is equivalent to a one-hop neighbor query that allows it to recover routes lo-

cally. The node I must buffer data packets while waiting for a RREP. If no RREPs are received,

then RERRs are sent as per the default mechanism (Section 2.4.6.4).

2.6.7 Reverse Routes

A RREQ generated by a source can be considered as a RREP in the reverse direction.

However, SNWs cannot be used for setting up routes in the reverse direction, because of the lack

44

of window boundaries. Hence, SWR uses an optimization to use SNWs. If node A receives a

RREQ from B and has no valid route towards the source S of the RREQ, node A creates a new

route entry for the source S, sets sAS ← B, sets the lifetime of the route equal to the reverse

route lifetime, and flags the route entry indicating that it is an invalid reverse route. When node

A has a flagged reverse route to S, and needs to send data packets to that destination, it sends

a unicast RREQ to sAS . This RREQ is forwarded on a hop-by-hop basis along a path of nodes

with invalid reverse routes to S, and a RREP can be generated by either a node satisfying SSC

or the destination. A unicast RREQ follows the same rules as a broadcast RREQ.

2.6.8 SWR Example

We illustrate an example of the creation of a sequence-number window. We show how

progressively ordered sequence numbers allow more intermediate nodes to reply to RREQs, and

the local repair mechanism to resolve a failure without notifying the source.

2.6.8.1 Sequence Number Window Creation

To illustrate the use of SNWs, assume that the nodes in Figure 2.6 (A) have an invalid

route for destination D, and store a corresponding sequence number of 1.

Now, assume node A starts a RREQ identified by (A, IDA) carrying (msn = 1, wc =

1) for destination D. Nodes B and C relay the RREQ after increasing the wc in the RREQ to

two and three, respectively. Node D, on receiving the RREQ, increments its sequence number

to 101 using a linear increment (say dstSeqInc = 100). It generates a RREP identified with

(A, IDA) and carrying sn = 101, and d = 0.

45

A B D

F

e1

7034
e2

E

76 1015126

C

(a) Time t1

A B D

E F

e1
26 51 76 101

70
e2

35

C

(b) Time t2

B

E F

70
e2

68

26 52
e1

76

C

101

DA

(c) Time t3

Figure 2.6: SWR operation - Example

Node C accepts the RREP because it satisfies ASC, adds a new routing table entry for

destination D, sets sCD ← D, and calculates a sequence number of 76 for destination D using

Eq. 2.3 (i.e., 101 − b (101−1)
3+1 c). Similary, node B and node A update their routing tables using

Eq. 2.3 to setup an entry for destination D with sequence numbers, 51 and 26, respectively.

At time t1, there is a progressive ordering of destination sequence numbers from node A to

destination D. The RREQ and RREP are identified by their unique computation pair (A, IDA),

46

and the corresponding values for the computation are cached are retrieved based on this pair.

After a similar sequence of events, assume that nodes E and F have set their destina-

tion sequence number for D to 34 and 70, respectively, at some time t < t1.

2.6.8.2 Route Maintenance

At time t2 > t1, link e2 fails. Node E detects a link failure and sends a RREQ with

(msnreq
D = 34, wc = 1) which evokes a RREP with snrep

D =76 from C that satisfies SSC. Node

E activates routing entry for D after processing the reply, and updates snE
D ← 35 as per Eq. 2.3.

Figure 2.6(b) shows the state of the network.

At a later time t3 > t2, let node B detect the failure of link e1 and sends a RREQ

with (msnreq
D = 51, wc = 1). Node E does not satisfy SSC and relays the RREQ with

(msnreq
D = 51, wc = 2). Note that there is a window between B and C spanning node E.

Node C responds to the RREQ with a RREP carrying snrep
D = 76, because SSC is satisfied.

Node E processes the RREP and sets snE
D ← 68 as per Eq. 2.3, which amounts to redistributing

sequence numbers in the window between B and C . Node B re-establishes a route to D, and

updates its route entry to set snB
D ← 52 and sBD ← E. In this case, we assume that node B has

sent a RERR to node A which may perform its own simultaneous route search for D; however,

for simplicity, we do not depict that. Figure 2.6(c) shows the DASG at time t3.

2.6.8.3 Local Repair

We illustrate the intermediate one-hop local repair of SWR with the following se-

quence of events. At time t4 > t3, link e1 comes up and link BE fails. Node B detects the

47

failure, and now attempts to perform a local repair (assuming it is not a source). Node B sends

a RREQ with msn = 52, which is answered by node C with sn = 76. Node B switches suc-

cessors to node C and recovers the route locally. The progressive ordering of sequence numbers

allows intermediate nodes to repair routes by querying neighbors.

The same benefits can also be illustrated without local repair by considering the mo-

bility of the network. If source A moves closer to C , and attempts to re-establish a route with

an expanding ring search. Node A will receive a RREP from C in its first attempt. This avoids

the necessity to flood all the way to the destination which happens to be the pre-dominant case

in AODV.

2.6.9 Analysis

Theorem 8. In SWR, if a path P={nk, ..., n1} exists at some point in time as defined by the

successor entries of the nodes along the path, it is true that snni
n1
<sn

ni−1
n1 or snni

n1
=sn

ni−1
n1 ∧

dni
n1
> d

ni−1
n1 , for i ∈ {2, k}.

Proof. For path P to exist at a given time t, it must be true that all nodes in P have a successor.

The route entry for destination n1 at node ni can be in one of the three states when it accepts

a RREP (satisfying ASC) for n1 identified by (src, rreqid) from neighbor node ni−1: (i) no

information, (ii) invalid , or (iii) valid. The RREP carries snni−1
n1 , and d

ni−1
n1 . Node ni switches

successors to node ni−1 and updates its route entry for n1 in one of the following ways.

Case (i): The route entry does not exist (snni
n1

= −1), and node ni must use SRC to

process the reply, and the ordering is maintained from the same argument as case (ii) discussed

in Theorem 2.

48

For the other two cases, we first derive the range of snadj
n1 calculated from Eq.2.1 when

msnni

(src,rreqid) ≥ snni
n1

, assuming snrep
n1 > snni

n1
. Assume that msnni

(src,rreqid) = snni
n1

+α and

snrep
n1 = snni

n1
+ β, where α, β are integers such that α ≥ 0 and β > 0. From Eq.2.1, we have

snadj
n1 = snni

n1
+β−bβ−α

λ
c, where λ = wcni

(src,rreqid)+1 > 1, and β > α. Therefore , we have

the inequality

snni
n1
≤ msnni

(src,rreqid) < snadj
n1
≤ snrep

n1
(2.4)

For cases (ii) and (iii), when snni
n1

< snrep
n1 , the route entry is updated as per Eq. 2.3,

and either snni
n1

is set to snadj
n1 or incremented by one (snni

n1
+ 1), and only increases. Hence,

it is true that for any predecessor ni+1 that uses ni as its successor at that instant of time that

sn
ni+1
n1 < snni

n1
, because it could not have received a higher sequence number in a RREP from

ni. With respect to node ni−1: from Eq. 2.4, snadj
n1 ≤ snrep

n1 = sn
ni−1
n1 . For the RREP to be

accepted, it is true that snrep
n1 >snni

n1
, and, therefore snni

n1
+ 1 ≤ snrep

n1 = sn
ni−1
n1 . If ni sets

snni
n1

= snrep
n1 , it is also true that dni

n1
> drepn1 , because link costs are greater than zero.

Consider cases (ii) and (iii), when snni
n1

= snrep
n1 ∧ dni

n1
≥drepn1 + lcni

ni−1
. After the

update, the value of snni
n1

is not changed and the value of dni
n1

cannot increase. Hence, the

ordering is not affected.

Hence, if path P exists at time t, every node ni, where i ∈ {2, k} must have accepted

a RREP from ni−1 and updated its route entry for n1 in one of the three states, and therefore,

the theorem is true.

Theorem 9. At any instant, SWR is loop-free.

49

Proof. From Theorem 8, the proof for loop-freedom of SWR is direct from the proof of loop-

freedom of the routing-framework (Theorem 4).

Theorem 10. In an error-free stable connected network, a source will establish a route to a

destination in finite time.

Proof. The proof is similar to the convergence proof for the framework (Theorem 5). We give

only an outline of the proof: Let source A issue a RREQ req, identified by (A, IDA) which

traverses a path, P = {nk, nk−1, ..., ni} (where ni can be n1), before reaching the destination

n1 or a node that satisfies SSC. If any node nj requested a reset (Rreq
n1 = 1), then the RREQ can

only be answered by the destination, and every node n along the path from nj to n1 must have

cached resetn(A,IDA)= 1 for this computation. The RREP issued either by a intermediate node

or the destination will have a sequence number greater than msnreq
n1 . When a node ni updates

its routing table, it is true that msnni

(A,IDA)<snni
n1
≤ snrep

n1 (by Eq. 2.3). If node ni is part of

the path that has resetni

(A,IDA) = 1 cached, then it updates to msnn1

(A,IDA) <snni
n1

= snrep
n1 (by

Eq. 2.2). In both cases, the new RREP is relayed with a snrep
n1 that will satisfy ASC at node

ni+1 because msnni

(A,IDA) ≤ sn
ni+1
n1 . If at node ni+1, the RREP does not satisfy ASC , then

node ni+1 learned a route with a higher sequence number and the new RREP generated with

sn
ni+1
n1 > snrep

n1 will still satisfy ASC at the nodes along the reverse path to the source. In

any case, the RREP forwarded along the reverse path will satisfy all the nodes and hence the

source will be able to establish a successor path in finite time due to finite time for message

exchanges.

50

2.7 Performance Comparison

We present results for SWR and AODV-RSN over varying loads and mobility. The

protocols used for comparison are AODV, the Dynamic Source Routing (DSR) protocol [13],

and the Optimized Link State Routing (OLSR) protocol [2] which are representatives of current

proposals in the MANET working group of the IETF [42]. DSR is an on-demand routing proto-

col that collects partial topology information in route request floods, and uses this information

as source-routes that are carried in the data packets to forward the packets to the destination.

OLSR is a pro-active link-state routing protocol that reduces the amount of information that

must be exchanged on topology changes by having a subset of the nodes (multi-point relays)

carry out the flooding of the link-state updates. Simulations are run in Qualnet 3.5.2. The pa-

rameters are set as in [41]. Both AODV and SWR use an expanding ring search during the route

request flood. Additionally, we evaluate SWR and AODV with their respective local repair

mechanisms, called SWR-LR and AODV-LR. We evaluate the performance loss due to forced

wait periods on node reboots by comparing AODV against AODV-RSN in a demonstrative sce-

nario where nodes reboot periodically.

2.7.1 Simulation Setup

Simulations are performed on two scenarios, (i) a 50-node network with terrain di-

mensions of 1500m x 300m, and (ii) a 100-node network with terrain dimensions of 2200m x

600m. Traffic loads are CBR sources with a data packet size of 512 bytes. Load is varied by

using 10 flows (at 4 packets per second) and 30 flows (at 4 packets per second). The MAC layer

51

used is 802.11 with a transmission range of 275m and throughput 2 Mbps. The simulation is

run for 900 seconds. Node velocity is set between 1 m/s and 20 m/s. We use two sets of traffic

characteristics: (i) random flows have a mean length of 100 seconds, distributed exponentially,

and (ii) fixed flows that last the entire simulation time. For the fixed flows, we only show results

for 30-flows because we did not notice any shift in trend from the one observed for the 10-flows

scenario with exponential flow distribution. Each combination (number of nodes, traffic flows,

scenario, routing protocol and pause time) is repeated for nine trials using different random

seeds.

2.7.2 Performance Criteria

We present four metrics. Delivery ratio is the ratio of the packets delivered per

client/server CBR flow. Latency is the end to end delay measured for the data packets reaching

the server from the client. Network load is the total number of control packets (RREQ, RREP,

RERR, Hello, TC etc) divided by the received data packets. Data hops is the number of hops

traversed by each data packet (including initiating and forwarding) divided by the total received

packets in the network. This metric takes into account packets dropped due to forwarding along

incorrect paths. A larger value for the data-hops metric indicates that more data packets traverse

more hops without reaching the destination necessarily.

2.7.3 Performance Discussion

Tables 2.2 and 2.3 summarize the results of the different metrics by averaging over all

pause times for the 50 and 100 node networks with random traffic-flows. Table 2.4 summarizes

52

the same set of metrics for 50 and 100-node networks with fixed traffic-flows. The columns

show the mean value and 95% confidence interval. All our performance discussions focus on

the average case because the confidence intervals overlap atleast slightly in most cases. The

packet delivery ratio, the end-to-end delay, and the control overhead over various pause times

for 50-node and 100-node networks with 30-flows is shown for random traffic-flows in Figures

2.9 and 2.7, and for fixed traffic-flows in Figures 2.10 and 2.8. The vertical bars in the graphs

indicate the 95% confidence intervals.

2.7.3.1 AODV-RSN

In the 10-flow scenarios, AODV-RSN has slightly higher control-overhead, and de-

livery latency than AODV. This is due to the extra mechanisms required to re-learn destination

sequence numbers, because of which RREQs have to be answered by the destination. However,

in the 30-flow scenarios, AODV-RSN, compared to AODV, shows significantly better packet

delivery, reduced control overhead and shorter latency. The performance results for AODV-

RSN demonstrate that the performance of the protocol is not affected by the extra mechanisms

required for maintaining correctness of the protocol.

Table 2.7.3.1 summarizes the results for the scenario that has nodes rebooting peri-

odically every 50-second interval for the 50-nodes, 10-flows scenario. Nodes running AODV

cannot participate in any routing action for DELETE PERIOD after a reboot, whereas nodes

on AODV-RSN can participate immediately. The results show the effects of forced waits on

node reboots. AODV has a very low packet delivery of (0.710±0.004) compared to AODV-

RSN (0.995±0.03) which is almost unaffected.

53

Nodes rebooting in AODV drop the packets if they are sources of flows or affect

network connectivity. The 50-second periodic reboot is clearly unrealistic. However, the pur-

pose of the simulations is to prove that having arbitrary wait periods after reboots can affect

performance adversely.

Table 2.1: Performance average over all pause times with 10-flows in a 50-node network with
nodes rebooting every 50-seconds

Metric AODV-RSN AODV
Delivery Ratio 0.995±0.030 0.710±0.004
Latency (sec) 0.015±0.001 0.027±0.012
Net Load 0.408±0.270 0.501±0.067
Data Hops 2.614±0.195 2.569±0.185

2.7.3.2 SWR

SWR has a very consistent performance in all scenarios and outperforms other pro-

tocols in most cases. The graphs show that SWR has excellent packet delivery in the very high

mobility scenarios. OLSR and DSR show performance comparable to SWR at lower mobility.

The key to the performance of SWR is the ability of many intermediate nodes to answer route

requests. Hence, by using the expanding ring search for route establishment, sources can estab-

lish a route by flooding a limited diameter of the network, without requiring to flood to reach

the destination as is the case of AODV. DSR performs poorly at high mobility, which can be

explained due to the stale caches. OLSR has poor performance in highly-mobile or heavy-load

scenarios (30-flows) where its topology information is inconsistent because of topology changes

or lost and delayed control packets. Although DSR exhibits very low control overhead, it is due

to the use of optimization to learn source-routes from data packets promiscously. OLSR’s con-

trol overhead is independent of the traffic flows. SWR’s end-to-end latency is among the lowest

54

across all scenarios. The data hops metric shows that, with relation to the packet delivery ratio,

all protocols forward an equivalent amount of packets; however, SWR delivers more packets to

the destination which reflects the correctness of the routes.

Table 2.2: Performance average over all pause times for 50 nodes network for 10-flows and
30-flows (random)

Protocol Size Delivery Ratio Latency (sec) Net Load Data Hops
SWR 10 0.995±0.001 0.020±0.002 0.338±0.080 2.582±0.180
SWR-LR 10 0.995±0.001 0.019±0.002 0.335±0.081 2.581±0.180
AODV-RSN 10 0.989±0.004 0.024±0.006 0.336±0.081 2.589±0.189
AODV 10 0.994±0.002 0.016±0.003 0.270±0.066 2.576±0.179
AODV-LR 10 0.994±0.002 0.017±0.004 0.266±0.067 2.580±0.180
DSR 10 0.940±0.027 0.041±0.047 0.220±0.095 2.677±0.185
OLSR 10 0.887±0.040 0.012±0.001 1.937±0.220 2.456±0.175
SWR 30 0.826±0.046 0.658±0.250 2.858±0.871 2.818±0.283
SWR-LR 30 0.846±0.049 0.550±0.237 2.273±0.789 2.825±0.271
AODV-RSN 30 0.787±0.048 0.757±0.264 3.656±0.973 2.923±0.314
AODV 30 0.765±0.0553 1.010±0.356 4.423±1.289 2.951±0.324
AODV-LR 30 0.770±0.056 0.965±0.333 4.269±1.264 2.929±0.309
DSR 30 0.683±0.059 4.760±1.073 0.410±0.140 3.625±0.308
OLSR 30 0.798±0.034 0.883±0.311 0.713±0.069 2.478±0.161

Table 2.3: Performance average over all pause times for 100 nodes network for 10-flows and
30-flows (random)

Protocol Size Delivery Ratio Latency (sec) Net Load Data Hops
SWR 10 0.989±0.004 0.053±0.010 1.423±0.402 3.757±0.317
SWR-LR 10 0.989±0.004 0.052±0.009 1.423±0.384 3.768±0.322
AODV-RSN 10 0.978±0.006 0.050±0.014 1.065±0.262 3.817±0.319
AODV 10 0.988±0.004 0.036±0.009 0.897±0.236 3.744±0.293
AODV-LR 10 0.988±0.004 0.035±0.008 0.872±0.221 3.767±0.293
DSR 10 0.876±0.050 0.099±0.057 0.859±0.353 4.257±0.317
OLSR 10 0.821±0.063 0.022±0.002 11.795±1.575 3.583±0.256
SWR 30 0.695±0.045 0.921±0.174 10.027±1.800 4.368±0.353
SWR-LR 30 0.718±0.049 0.825±0.177 8.431±1.703 4.348±0.332
AODV-RSN 30 0.660±0.038 0.897±0.171 11.776±1.980 4.545±0.363
AODV 30 0.608±0.051 1.455±0.385 18.298±13.069 4.751±0.434
AODV-LR 30 0.592±0.044 1.617±0.538 21.339±15.523 4.868±0.463
DSR 30 0.618±0.049 5.125±0.782 1.243±0.405 6.141±0.499
OLSR 30 0.821±0.063 3.371±0.532 5.423±0.669 4.014±0.277

55

Table 2.4: Performance average over all pause times for 50-nodes and 100-nodes network with
30-flows (fixed)

Protocol Size Delivery Ratio Latency (sec) Net Load Data Hops
SWR-LR 50 0.813±0.069 0.570±0.328 2.852±1.131 2.905±0.350
SWR 50 0.795±0.073 0.664±0.373 3.448±1.313 2.955±0.369
AODV-RSN 50 0.729±0.075 0.826±0.393 5.588±1.689 3.122±0.417
AODV-LR 50 0.735±0.082 0.865±0.457 5.095±1.861 3.095±0.420
AODV 50 0.738±0.083 0.866±0.473 5.044±1.874 3.084±0.424
DSR 50 0.581±0.081 3.422±0.813 0.430±0.156 3.809±0.406
OLSR 50 0.772±0.042 0.842±0.413 0.727±0.072 2.534±0.187
SWR-LR 100 0.715±0.074 0.682±0.270 8.601±2.650 4.348±0.570
SWR 100 0.696±0.072 0.752±0.269 10.009±2.653 4.358±0.530
AODV-RSN 100 0.608±0.070 1.027±0.316 15.656±3.488 4.866±0.625
AODV-LR 100 0.609±0.094 1.082±0.444 17.909±12.097 4.903±0.759
AODV 100 0.608±0.088 1.060±0.402 16.812±8.743 4.731±0.696
DSR 100 0.476±0.099 3.865±1.150 1.208±0.453 6.177±0.733
OLSR 100 0.585±0.066 2.761±1.062 5.541±0.811 4.074±0.452

2.7.3.3 Local Repair

Tables 2.2, 2.3, and 2.4 list the performance metrics for AODV and SWR with lo-

cal repair. AODV-LR shows very little improvement over the base performance of AODV.

SWR-LR uses a simple one-hop neighbor query to repair routes locally and shows a notice-

able improvement over SWR in terms of higher packet-delivery ratio, and reduced latency and

control overhead. The reason for AODV’s lack of improvement with the local repair optimiza-

tion is due to the necessity to know the hop-count to the source, and an additional ttl-check

which limits the number of repairs that can actually be initiated. The ttl-check mechanism

for the local repair RREQ [33] in AODV is as follows: A local repair RREQ est-ttl is cal-

culated to fall in the range, AODV MIN REPAIR TTL < est-ttl < (hopcount-to-source)/2 +

AODV LOCAL ADD TTL. The prescribed value for AODV LOCAL ADD TTL is two, and the

value for AODV MIN REPAIR TTL is one. To initiate a RREQ, it is necessary that est-ttl be

56

less than the hopcount-to-source. Calculating the inequality, a node can initiate a RREQ only

if (hopcount-to-source) > 4. This basically limits the route repair operation to only interme-

diate nodes that are at least at a distance of four hops from the source; if the total path length

is less than four hops, no local-repair attempts are made. Intuitively, our claims correlate with

a previous study on the scalability of AODV [33] where the performance results indicate that

local-repair in AODV provides no additional benefits in networks of sizes 100 or less.

2.8 Conclusion

We have introduced new techniques for the class of routing protocols based on desti-

nation sequence numbers. Our mechanism for re-learning destination sequence numbers does

not require reliable communication and ensures correct recovery after a node failure or reboot,

without requiring arbitrary timers to flush out old information from the network. We also present

a new sufficient condition that allows manipulation of sequence numbers by treating them as

a finite label space, rather than as an absolute timestamp, effectively allowing manipulation of

sequence numbers.

Using our safe reset technique, we have introduced a new robust and loop-free on-

demand routing framework based on destination sequence numbers that can recover correctly

from node failures and state loss, even when operating on top of a MAC layer such as the

IEEE802.11DCF, which does not guarantee reliable message delivery or bounded message de-

lays. Under such conditions, we have illustrated that the current AODV specification [19] is

vulnerable to looping, de-facto partitions, and the counting-to-infinity problem.

57

We present two instantiations of our framework. We present AODV-RSN, with which

we show how robustness can be added to solve AODV’s problems. With SWR, we show how

the framework can be used to design a robust bandwidth-efficient routing protocol that can

improve performance by assigning destination sequence numbers to successor nodes along a

path progressively. SWR also helps to showcase how the manipulation of sequence numbers as

labels can be useful to a routing protocol. Our performance results comparing SWR and AODV-

RSN against state-of-the-art MANET routing protocols (AODV, DSR, and OLSR) validate our

previous claims. AODV-RSN shows that immediate node participation in the routing protocol

almost leaves the performance unaffected while AODV’s requirement for waiting arbitrary time

periods affects performance adversely.

The techniques we introduce can be applied to a wider context of problems. The

sequence number reset can be used to provide a robust mechanism on node failures in link-

state protocols like OSPF when used in MANETs [32], pro-active destination sequence number

based routing protocols such as DSDV [25], and destination sequence number based multicast

routing protocols such as the multicast version of AODV [31]. The routing framework can be

used to add robustness to LDR [8], the Feasible Label Routing (FLR) protocol with destination-

sequenced labels [34], or the Split Label Routing (SLR) protocol [27] where the sequence num-

ber serves as a reset for distances, labels (paths), or label sets, respectively. Sequence number

windows can be applied suitably to hybrid pro-active approaches such as the Adaptive Distance

Vector (ADV) routing protocol [28]. The initial setup phase in ADV can be used to estimate a

sequence number window increment, and by creating windows, routes can be repaired locally

on-demand without waiting for the next update from the destination.

58

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−10

1
AODV SWR AODV−RSN AODV−LR SWR−LR DSR OLSR

0 50 100 200 300 500 700 900
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
−10

0

10

20

30

40

50

60

70

80

90

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 2.7: Random (100-nodes, 30-flows, 120 pps)
59

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−10

1
AODV SWR AODV−RSN AODV−LR SWR−LR DSR OLSR

0 50 100 200 300 500 700 900
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
0

10

20

30

40

50

60

70

80

90

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 2.8: Fixed (100-nodes, 30-flows, 120 pps)
60

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−10

1
AODV SWR AODV−RSN AODV−LR SWR−LR DSR OLSR

0 50 100 200 300 500 700 900
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

8

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

8

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 2.9: Random (50-nodes, 30-flows, 120 pps)
61

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−10

1
AODV SWR AODV−RSN AODV−LR SWR−LR DSR OLSR

0 50 100 200 300 500 700 900
0.4

0.5

0.6

0.7

0.8

0.9

1

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
0

2

4

6

8

10

12

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 2.10: Fixed (50-nodes, 30-flows, 120 pps)
62

Chapter 3

Routing using labels as path information

3.1 Introduction

We present the Feasible Label Routing (FLR) protocol, which uses path information

only in its signaling for on-demand routing, while supporting loop-free incremental forwarding

of data packets when the header of each data packet simply states the address of the intended

destination without requiring source-routes as in the case of prior proposals based on path infor-

mation. FLR collects path information similar to other protocols, and converts the path infor-

mation into labels. Just as AODV orders nodes according to increasing sequence numbers to a

destination, and DUAL orders nodes according to decreasing feasible distances to a destination,

FLR orders nodes according to labels that become lexicographically smaller as the destination

is approached. FLR achieves this using route requests (RREQ), route replies (RREP), and route

errors (RERR) that carry path information and are similar to the messaging structure of other

on-demand routing protocols.

63

In FLR, each node maintains a label for a destination for which it needs to forward

traffic, where a label is built based on the properties of a path to a destination. The feasible

label of a node for a destination is simply the lexicographically smallest path to the destination

attained by the node since the last time it had to send RERRs to its neighbors. A node can accept

a RREP for a destination generated by the destination or any intermediate node if the label to

the destination advertised in the reply is “smaller” than the feasible label at the node that issued

the RREQ. Hence, to realize instantaneous loop freedom in FLR, RREQs carry the minimum

feasible label that must be satisfied by the node issuing a RREP, and a RREP carries the current

label of the node forwarding the reply.

Section 3.2 presents sufficient conditions for loop-free routing using feasible labels.

Section 3.3 describes FLR and several optimizations. Section 3.4 summarizes how some of our

results could be used to enhance AODV and DSR. Section 3.5 shows an example of FLR in

operation. Section 3.6 analyzes the instantaneous loop freedom and termination properties of

FLR. Section 3.7 compares the performance of FLR against AODV and DSR, which are two

popular on-demand protocols, and OLSR, which is a popular a pro-active protocol. The results

show that FLR attains better performance than DSR, AODV, AODV-PA, and OLSR, in terms of

end-to-end delays, packet-delivery ratios, and control overhead. The better performance of FLR

is due to the use of cached path information to order sources and relays with respect to destina-

tions, rather than deriving paths to new destinations. Simulations are performed for variants of

FLR that use destination-sequenced labels (labels associated with a destination-sequence num-

ber), called FLR-DL, and are similar to those used in similar to AODV-PA [11]. The results

obtained for FLR-DL are far better than those of AODV-PA. This is because AODV-PA uses

64

path information only to setup routes to relay nodes that RREQs and RREPs traverse; however,

these routes can expire quickly if there are no flows for the relay nodes and the corresponding

path information is not used in future routing decisions. By contrast, the path information in

FLR is stored as a label, and although it may become out-of-date, the ordering of the labels

enables FLR to find a new loop-free successor to the destination on a route failure. The results

for a simple neighbor-query based local repair mechanism in FLR-DL shows that the labeling

is more effective in finding a neighbor as a successor compared to the local repair scheme used

in AODV which requires a ttl-constrained flood to locate the destination. Section 3.8 provides

our concluding remarks.

3.2 Sufficient Conditions for Loop Freedom Using Labels

We specify and prove new sufficient conditions for loop-free routing that are applica-

ble to on-demand and pro-active routing protocols based on path information. These conditions

extend the notion of ordering distances to a destination, such that nodes closer to the destina-

tion have shorter distances to it, into the notion of ordering the paths to a destination lexico-

graphically, so that nodes closer to the destination have labels representing their paths that are

lexicographically smaller.

Table 3.1 summarizes the terminology used to describe the sufficient conditions for

loop-free routing, as well as to specify FLR in the next section. The values of labels, link costs,

or routing-table entries are functions of time, but the time for which the values of such functions

apply are specified only when needed.

65

A label L of size n, n ≥ 0, is an ordered sequence of unique elements {e1(L) , e2(L),

...,en−1 (L), en(L) }, where each element ei(L) ∈ L consists of a valid node identifier (denoted

by eidi (L)) and the cost of the link from ei(L) to ei+1(L) (denoted by eci (L)). For the last

element of L, ecn(L) = 0.

The label of node B for destination D is denoted LB
D, and LA

DB denotes the label for

destination D reported by node B and stored by node A. In a routing protocol based on path

information, when node A chooses node B as its successor for destination D, the path from A

to D consists of the concatenation of the link from A to B with the path from B to D. Hence,

if we denote the concatenation of two labels L1 and L2 by L1 ⊕ L2, if node A chooses node B

as its successor to destination D, its label equals LA
D = (A, cAB)⊕ LA

DB , where cAB is the cost

of the link from A to B.

The weight of a label L of size n ≥ 0 is denoted by the function W (L), where

0 ≤W (L) ≤ ∞, and is defined by

W (L) =















∞ if n = 0

∑n
i=1 e

c
i (L) otherwise

(3.1)

Relational operators on two labels L1 and L2 of sizes n1 and n2, respectively, are

defined as follows:

L1 = L2 if











































W (L1) = W (L2) ∧

{ n1 = n2 ∧

(eidj (L1) = eidj (L2) ∀j | 1 ≤ j ≤ n1) }

(3.2)

66

L1 > L2 if



















































































W (L1) > W (L2)∨

(W (L1) = W (L2) ∧ n1 > n2) ∨

{ (W (L1) = W (L2) ∧ n1 = n2) ∧

(∃j | { 0 < j ≤ n1 ∧ (eidj (L1) > eidj (L2)) ∧

(eidh (L1) = eidh (L2) ∀ h | j + 1 ≤ h ≤ n1) }) }

L1 < L2 if



















































































W (L1) < W (L2) ∨

{W (L1) = W (L2) ∧ n1 < n2 } ∨

{ (W (L1) = W (L2)) ∧ (n1 = n2) ∧

(∃j | { 0 < j ≤ n1 ∧ (eidj (L1) < eidj (L2)) ∧

(eidh (L1) = eidh (L2) ∀ h | j + 1 ≤ h ≤ n1) }) }

The following sufficient conditions for loop-free routing using labels extend the con-

ditions introduced for DUAL, which were based on distances to destinations [7]. The new

conditions assume that (a) nodes communicate to neighbors their labels to destinations pro-

actively or on demand, and (b) each node maintains a routing table specifying the next hop(s)

to some or all destinations in the network, and the labels notified by other nodes for some or all

destinations.

The label reported by node B for destination D and stored at node A is denoted by

LA
DB , and L∗A

D and L∗A
DB denote the minimum values attained by LA

D and LA
DB , respectively.

67

Feasible Label Condition (FLC): Node A can make node B its successor for desti-

nation D after processing an input event if LA
DB < L∗A

D . If no neighbor exists with a smaller

reported label than L∗A
D , then node A must keep its current successor if it has any.

Extended Label Condition (ELC): Node A can make node B its successor for desti-

nation D after processing an input event if (A, cAB) ⊕ LA
DB < L∗A

D , where (A, cAB) states the

identifier of A and the cost of the link from A to B. If no neighbor exists with a smaller reported

label than L∗A
D , then node A must keep its current successor if it has any.

Next-hop Label Condition (NLC): Node A can make node B its successor for desti-

nation D after processing an input event if LA
DB < L∗A

DS , where S is node A’s current successor

to destination D. If no neighbor exists with a smaller reported label than L∗A
DS , then node A

must keep its current successor if it has any.

Theorem 11. Using FLC whenever nodes choose their successors to destination D is sufficient

to ensure that no routing-table loops are created for destination D.

Proof. FLC is equivalent to SNC from DUAL, which is shown to be loop-free [see [7], Theorem

1, pp. 132ff]. FLC uses feasible labels, which simply extrapolate the ordering properties of

feasible distances used in DUAL by using the relational operators on labels stated in Eq. 3.2.

As Theorem 11 shows, using FLC guarantees that routing-table loops are not created,

and the other conditions can also be shown to be sufficient to ensure loop-free routing using

68

Table 3.1: Terminology used for FLR

Notation Description
LA
D The stored label for destination D at node A.

sAD The successor for destination D at node A.
L∞ An invalid route or a label of infinite cost.
FLA

D The smallest label assigned by node A for D
since A sent its last route error for D.

PSA
D The set of neighbors of node A to whom

node A has sent RREPs for D.
cAB The cost of the link from node A to neighbor B.
rep Superscript used for variables in a route reply.
req Superscript used for variables in a route request.

labels. However, nodes must keep choosing as successors to destinations those neighbors that

offer labels that are always “smaller” than the smallest labels they have attained. Consequently,

even if there are physical paths from node A to destination D, it is possible for node A to be

unable to pick any neighbor as successor to D if FLA
D is not larger than any label reported by a

neighbor of node A.

In practice, additional mechanisms are needed together with one of the sufficient con-

ditions for loop freedom stated above to allow nodes to increase their feasible labels to desti-

nations safely (without causing loops). One approach to allowing a node to safely increase its

feasible label for a destination would be the use of diffusing computations as in DUAL. How-

ever, a diffusing computation is impractical in MANETs, because it requires the origin of the

computation to coordinate the updating of its successor for a given destination with nodes many

hops away whose paths to the destination include the origin of the computation. The next sec-

tion introduces FLR, which implements much more efficient mechanisms for allowing nodes to

increase their feasible labels to destinations, without creating routing-table loops.

69

3.3 Feasible Label Routing Protocol (FLR)

3.3.1 Principles of Operation

FLR uses route request (RREQ), route reply (RREP), and route error (RERR) mes-

sages similar to that of other on-demand routing protocols. The routing-table entry at node A

for destination D includes the current label (LA
D), the feasible label (FLA

D), the successor (sAD),

and the predecessor set for D (PSA
D). Labels are as defined in Section 3.2, and FLA

D is the

lexicographically smallest label that node A has obtained for D since it sent its last RERR for

D. PSA
D is the set of predecessors for destination D, which are those neighbors of node A

to whom node A has sent RREPs for D. The superscripts req and rep are used for variables

included in a RREQ and RREP, respectively.

FLR is based on the following four rules (called conditions), which apply for a given

destination D independently of other destinations. These rules are used to implement FLC in an

on-demand routing context and to permit nodes to increase their feasible labels when needed,

without causing routing-table loops. The rules make use of the minimum feasible label of any

of the nodes that relayed or originated a RREQ for destination D (denoted by MFLreq
D), the

path traversed by the RREQ (denoted pathreq
D), and the current label of the node that transmits

a RREP for D (denoted by Lrep
D).

ALC: (Accept Label Condition). When node A receives a RREP from node B for destination

D with Lrep
D 6∈ A , then

If No Local Repair Used:

Node A sets sAD ← B if LA
D = L∞ or (LA

D 6= L∞ and (A, cAB) ⊕ Lrep
D < LA

D and

70

Lrep
D < FLA

D).

If Local Repair Used:

Node A sets sAD ← B if ((A, cAB) ⊕ Lrep
D < LA

D and Lrep
D < FLA

D). Node A sends

a RERR reliably to its neighbors in PSA
D and then sets sAD ← B and PSA

D ← φ if

((A, cAB)⊕ Lrep
D < LA

D and Lrep
D 6< FLA

D).

SLC: (Start Label Condition). Node I can issue a RREP responding to a RREQ for destina-

tion D if I has an active route to D and LI
D < MFLreq

D .

MLC: (Minimum Label Condition). If node A relays a RREP for destination D, it sets Lrep
D =

LA
D. Node A relays a RREQ for destination D only if A 6∈ pathreq

D and sets MFLreq
D =

min{MFLreq
D , FLA

D}.

RLC: (Reset Label Condition). If node A must change sAD, then it sets LA
D ← L∞ and

If No Local Repair Used: Node A sends a RERR reliably to its neighbors in PSA
D

before setting PSA
D ← φ and sending a RREQ for D with MFLreq

D = FLA
D.

If Local Repair Used:

Node A sends a RREQ containing MFLreq
D = FLA

D.

When no local repairs are used, node A first sends a RERR to block those neighbors

using A as next hop to D with a reliable RERR, and then it attempts to obtain a new next hop

to D with a RREQ (RLC). A RREQ traverses loop free paths and carries the minimum feasible

label of any of its relays (MLC), and only a node with a label strictly smaller than the minimum

feasible label of the RREQ can create a RREP (SLC), and a RREP which specifies the label

71

of the node forwarding it (MLC). If local repairs are used, node A attempts to obtain a new

successor with a label smaller than its own feasible label, and blocks those neighbors using A

as next hop to D with a reliable RERR if no such neighbor is found and its feasible label has to

be changed.

3.3.2 Information Stored and Exchanged

The routing information used by nodes running FLR is maintained in the routing

table. The routing-table entry for a destination D at a given node A specifies: (a) The successor

to D (sAD), (b) the predecessor set for D (PSA
D), (c) the current path label (LA

D), and (d) the

feasible label for D (FLA
D).

A RREQ consists of the tuple {dst, src, reqid, MFLreq
dst , path

req
dst}, where src is the

identifier of the source of the RREQ seeking a path to the destination dst. The reqid is an

identifier assigned by src to the RREQ, such that the pair (src, reqid) is unique. The pathreq
dst

field is a list of {id, c} pairs specifying the nodes (id) that were traversed by the RREQ and the

associated link cost c of each hop.

A RREP consists of the tuple {dst, src, Lrep
dst , ttl, path

rep
dst}. The field src specifies the

origin of the RREQ that caused the RREP. The field ttl is the time remaining for the route to dst

at the node transmitting the RREP. The label Lrep
dst is the current label of the node transmitting the

RREP. The field pathrep
D is a list of {id, c} pairs specifying the nodes (id) that were traversed

by the RREQ that originated the RREP and the associated link cost c of each link.

A RERR message consists of the tuple {orig, reset}. The field orig is the node gen-

erating the route error message. The field reset is the list of destinations for which the origin

72

of the RERR must reset its feasible label, and informs the recipients of the RERR that its origin

needs a new route for each destination listed in reset.

3.3.3 Basic Route Maintenance

3.3.3.1 Initiating a RREQ

Node A is said to be active for the route computation for destination D (i.e., the

RREQ) that is uniquely identified by the pair (A, IDA) when it originates such a RREQ. A

node can be the origin of at most one RREQ for the same destination at any given time. The

RREQ (A, IDA) terminates when either node A attains a feasible label for destination D (by

receiving a RREP for its RREQ) or the timer for its RREQ expires.

A node A that requires a route for destination D buffers the data packets if it is active

for destination D. Otherwise, it issues a RREQ {D, A, reqid = IDA, MFLreq
dst , path

req
D } by

setting IDA ← incremented request counter; reqid ← IDA; MFLreq
D ← FLA

D; path ← φ;

and RREQ timer← (2.ttl.latency), where ttl is the time-to-live of the broadcast flood and latency

is the estimated per-hop latency of the network.

If node A receives no RREP for destination D after the expiry of its timer for RREQ

(A, IDA), it sends a new RREQ with an increased ttl. If after a number of attempts node A

does not receive a RREP, a failure is reported to the upper layer. The number of hops that a

RREQ can traverse is controlled externally from the RREQ by means of the TTL field of the IP

packet in which a RREQ is encapsulated, or by other means.

73

3.3.3.2 Relaying RREQs

A node relaying a RREQ originated by another node is said to be engaged in the

RREQ. A node may be engaged in multiple RREQs for the same destination, and a node that

engaged in a RREQ maintains no explicit state for it.

When node B receives RREQ {D, A, reqid = IDA, MFLreq
dst , path

req
D }, it first

determines its own status for (A, IDA). If B is active (i.e., B = A) or engaged (i.e., B is listed

in pathreqD) in the computation (A, IDA), it silently drops the RREQ. Otherwise, node B is

said to be passive. If this is the case and SLC is satisfied (i.e., LB
D < MFLreq

D), then node B

issues a RREP (Section 3.3.3.4). Else, if SLC is not satisfied, node B relays the RREQ with

MFLreq
D ←min{FLB

D, MFLreq
D } and pathreqD ← (B, cBD)⊕ pathreqD .

3.3.3.3 Route Failures

Node A sets PSA
D ← φ, sAD ← nil, LA

D ← L∞ if no data packets have been for-

warded using this route entry for active route time seconds.

Node A carries out the following steps if its predecessor set (PSA
D) is not empty and

either node A receives a link-level notification that its link to sAD has failed, or node A receives

a RERR from sAD:

No Local Repair Used: Node A sends a RERR reliably to all the nodes in PSA
D, sets

PSA
D ← φ, and after taking those steps it sends a RREQ for D (Section 3.3.3.1) if node A is a

source of data packets for D.

Local Repair Used: Node A originates a RREQ for D (Section 3.3.3.1) and waits

74

for a RREP. If node A receives a RREP for D, then it proceeds as stated in Section 3.3.3.5.

3.3.3.4 Initiating and Processing RREPs

When node I processes RREQ {D, A, reqid = IDA, MFLreq
D , pathreqD } and SLC

is satisfied (i.e., LI
D < MFLreq

D), it issues a RREP {D, src, Lrep
D , ttl, pathrepD } where Lrep

D ←

LI
D. The destination or the intermediate node initiating the reply sets pathrep

D to the reverse

path pathreqD traversed by the RREQ.

If node A receives RREP {D, src = S, Lrep
D , ttl, pathrepD }, it determines if it is the

source S of the RREQ that caused the RREP. If so, it proceeds as Section 3.3.3.5 describes. If

A 6= S, then it updates its routing table as Section 3.3.3.5 states, and forwards the RREP along

pathrepD setting Lrep
D ← LA

D. Node A also adds the next hop of the RREP, B, to PSA
D.

3.3.3.5 Adding and Updating Routes

By definition, if node A has no routing-table entry for destination D, its label and

feasible label for D are assumed to have infinite cost. If link (A, B) changes its cost cAB ,

then for each destination D for which sAD = B, node A updates cAB in LA
D and FLA

D ←

min{FLA
D, L

A
D}.

When Node A receives RREP {D, S, Lrep
D , ttl, pathrepD } from neighbor B, then it

sets a temporary label TLA
D ← (A, cAB)⊕ Lrep

D and carries out the following steps:

No Local Repair Used: If LA
D =L∞ or LA

D 6= L∞∧ TLA
D < LA

D∧L
A
rep <FLA

D, then

node A sets sAD ← B, LA
D ← TLA

D, and FLA
D ←min{FLA

D, TL
A
D}.

Local Repair Used:

75

1. If Lrep
D < FLA

D and LA
D > TLA

D, then node A sets LA
D ← TLA

D, FLA
D ←min{FLA

D, TL
A
D},

and sAD ← B.

2. If Lrep
D 6< FLA

D and LA
D = L∞, then node A sends a RERR reliably to all the nodes in

PSA
D, and then sets PSA

D ← φ, sAD ← B, LA
D ← TLA

D, and FLA
D ←min{FLA

D, TL
A
D}.

3.3.4 Route Maintenance Optimizations

Several optimizations can be added to FLR’s basic operation, in terms of how cached

labels and path information included in RREQs are used.

3.3.4.1 Inferring Paths to Relays

The labels already stored in the routing tables for some destinations can be used to

infer paths to other destinations that appear as relays in such labels. Because FLR assumes

that data packets are forwarded incrementally (hop by hop) using only the addresses of the

intended destinations, a node can forward a data packet for a destination to a neighbor only if

that neighbor has a valid route to that destination, for otherwise the packet would simply elicit

a RERR.

FLR can be extended with Source Routed Requests (SRREQ) that carry the path along

which the request is forwarded before it is answered by a relay or the destination. Sending a

SRREQ avoids flooding the network with RREQs. The path to a destination is determined

by executing a path selection algorithm (i.e., Dijkstra) over the current set of all active labels

(paths) in the routing table.

76

3.3.4.2 Multi-path Routing

The use of labels is conducive to allowing multi-path routing. Two approaches can be

followed for multi-path routing using FLR, and both require a node to store the label reported

by each of its neighbors for a given destination. In FLR, node A should store the label for

destination D reported by its neighbor B (denoted by LA
DB) only if LA

DB < FLA
D.

In one approach, a node with multiple paths to a destination uses all of its available

paths balancing the traffic load among them. The advantage of this approach is that it can be

used to reduce packet-delivery delays (e.g., [23]). In another approach, a node uses only one

path for a destination and uses other paths when the currently used path is lost. Because paths

not being used may no longer be active in one or more of the relays along the path, a node that

needs to use an alternate path must send a SRREQ in much the same way as when a node infers

paths from cached information. The SRREQ is answered by the first relay with an active route

to the destination.

3.3.4.3 Using Reverse Paths

A RREQ initiated by a node can be used by nodes receiving the request to update their

routing tables with a route to the source of the RREQ in the reverse direction. However, because

of the necessity for accurate predecessor information, the route cannot be used for data packet

forwarding. A route entry created from the reverse route in a RREQ is valid for the reverse-

route ttl, and a SRREQ is used to validate the path before data packets are forwarded. This

allows the predecessor set to be built at nodes along the path when the RREPs to the SRREQs

are received.

77

3.3.4.4 Keeping Labels Unique

We note that the basic operation of FLR does not allow a node A to accept a RREP

from a neighbor B in which A ∈ Lrep
D . As an example of this case, consider node A with

LA
D 3 {X ⊕ . . . ⊕ D} and assume that node X changes its label and feasible label to D to

FLX
D = LX

D > LA
D after blocking its predecessors for D. If node X needs to find a new path

to D and sends a RREQ, node A may be able to reply to X’s RREQ if LA
D is smaller than the

minimum feasible label of the RREQ created by X . The reply from A would provide X with a

label Lx
D 3 {X ⊕ . . .⊕D}. Obviously, node A should not provide X with a label that already

includes X , because that indicates to A that it has outdated path information and the RREP will

be dropped by X .

Hence, in general, if node A has an active route to destination D and label LA
D, it

should not reply to any RREQ if ∃j| 0 < j ≤ |pathreq| ∧ (eidj (pathreq) ∈LA
D ∨ srcreq ∈

LA
D), where |pathreq| is the number of elements in the label.

3.3.4.5 Using Destination-Sequenced Labels

We define a destination-sequenced label DL as the union of a label L and a sequence

number assigned to L by the last element of the label, denoted by SN(L). The relational

operators for two labels defined in Eq 3.2 can be extended to destination-sequenced labels. Let

DL1 = L1 ∪ SN(L1) and DL2 = L2 ∪ SN(L2), then

DL1 = DL2 if { SN(L1) = SN(L2) ∧ L1 = L2 } (3.3)

78

DL1 > DL2 if



















SN(L1) < SN(L2) ∨

{ SN(L1) = SN(L2) ∧ L1 > L2}

DL1 < DL2 if



















SN(L1) > SN(L2) ∨

{ SN(L1) = SN(L2) ∧ L1 < L2}

With the relational operators of Eq. 3.3, the same sufficient conditions for loop-

free routing using labels introduced in Section 3.2 can be shown to also hold for destination-

sequenced labels. Hence, FLR can be based on destination-sequenced labels and destination-

sequenced feasible labels.

To take advantage of sequence numbers as part of labels, SLC must be modified to

allow the destination to increase its own sequence number each time it answers a RREQ:

SLC-DL: (Start Label Condition for Destination-Sequenced Labels). Node I can issue a RREP

responding to a RREQ for destination D if I has an active route to D, and DLI
D <

MFDLreq
D . If I = D, then node I increments SN(LD

D) before it sends its RREP

(which specifies DLrep
D = LD

D) over the reverse path traversed by the RREQ.

There are two different approaches that can be followed when handling RREQ’s.

Approach 1: RLC can be modified into an RLC with destination sequenced labels

(RLC-DL), so that when node A has to originate a RREQ it increments the sequence number

of the minimum destination sequenced feasible label (MFDL) sent in the RREQ. Doing so

amounts to a generalization AODV’s sequence numbering approach. The advantage of modi-

fying RLC this way is that, as we state in the next section, no packet filtering based on prede-

79

cessors is needed to prevent data packets from looping when RERRs are sent unreliably. The

disadvantage is that fewer intermediate nodes are able to satisfy SLC-DL and generate a RREP.

Approach 2: More intermediate nodes can satisfy SLC-DL if nodes originate a

RREQ following RLC with the stored destination sequenced label for the MFDL. Because

the destination sequence number associated with the label is not incremented, this scheme al-

lows more nodes to satisfy SLC-DL. Intermediate nodes storing a DL with the same sequence

number as the MFDL of the RREQ can answer if they have a stored lower cost label for the

destination, or if they have a higher sequence number. Intuitively, the sequence numbers as-

sociated with the labels serve as a pseudo time-stamp to determine the freshness. Within the

same time-stamp the labels are ordered lexicographically, and the time-stamps of the labels get

fresher along the path towards the destination. To maintain the strict ordering, the following

additional modifications are required to the signalling scheme: RREQs and RREPs to carry a

reset (’R’) bit and a Destination-Initiated (’D’) bit, respectively. The MLC needs to be modified

into a MLC with destination-sequenced labels (MLC-DL) where if MFDL in the RREQ is

fresher (i.e., higher sequence number or same sequence number and higher cost label) than the

stored FL for the destination, then the ’R’-bit must be set when relaying the RREQ. Interme-

diate nodes in SLC-DL must generate RREPs only if ’R’ bit is not set. The ’D’-bit must be set

when the destination originates the RREP, and nodes with no known MFDL must only accept

RREPs with ’D’-bit set. This is for the purposes of correct termination when per-destination

sequence numbers are used and is discussed in [14], [15]. This approach is similar to LDR,

which was proposed as an improvement on AODV and allows more intermediate nodes to reply.

In LDR, sequence numbers serve as a ”timestamp” for the distances to determine the freshness.

80

The destination-sequenced label scheme based on Approach 2 for re-establishing

routes lends itself to a simple local repair scheme without any constraints (i.e., information

about hop-count to source, ttl-checks, etc.,) as in the case of AODV. An intermediate node ex-

periencing a link failure for a destination will send a RREQ as per RLC with ttl set to 1. The

node buffers the data packets until it receives a reply. If the RREQ timer expires, the node sends

a RERR as per default rules.

Approach 3: Given that destination sequence numbers are maintained for each desti-

nation and that including the sequence numbers of the relays along the path to a destination is

straightforward, the notion of a destination-sequenced label can be extended to take into account

the sequence number assigned to each node along the path. In this case, the relational operators

defined above can be modified to include a comparison of the sequence number of each node

in the labels being compared. For example, consider the following two extended destination-

sequenced labels with the sequence numbers of relay nodes, EDL1={[A, 1], [B, 1], [C, 1], [D, 1]},

and EDL2={[F, 1], [E, 1], [C, 2], [D, 1]}. Note that the new comparison based on sequence

numbers will result in EDL2 being considered ”fresher” than EDL1 (i.e., EDL2 < EDL1),

whereas, it would have been considered ”older” without the extended sequence numbers. The

extended labels implicitly capture the freshness of the paths themselves, because a sequence

number associated with every relay node can double as a link sequence number. This will prove

useful for previously discussed optimizations based on topology information.

A limitation with any optimization of FLR based on destination sequenced labels

is that sequence numbers must be handled carefully when nodes reboot, a network partitions,

and sequence numbers wrap around. However, we have proposed approaches that solve these

81

robustness issues [14] [15].

3.3.5 Forwarding Data Packets

Thus far we have stated that RERRs are sent reliably to the predecessors of a node.

However, achieving reliable transmissions of control packets intended for multiple destinations

is not practical in MANETs that rely on contention-based MAC protocols (e.g., IEEE 802.11

DCF). Hence, the operation of FLR needs to be modified slightly to accommodate an unreliable

link layer.

A simple way to accommodate an unreliable MAC protocol in FLR consists of al-

lowing nodes to broadcast RERRs unreliably, and requiring nodes to determine if a packet that

needs to be forwarded was received from a predecessor or not. Because a node that sends a

RERR for a destination empties its predecessor set for the destination, it follows that no packets

can traverse loops if nodes forward packets only when they are received from valid predeces-

sors. Accordingly, when node A receives a data packet for destination D from neighbor B,

node A forwards the packet to its own next hop for destination D if the node has an active route

for D and B ∈ PSA
D. Otherwise, node A drops the packet and sends a RERR for destination D

to node B.

Packet filtering is not needed if destination-sequenced labels are used and nodes that

originate RREQs increase the sequence number for the destination in the MFDL carried in the

RREQ. This is because nodes that use a given node A in their paths to a destination are unable

to satisfy SLC-DL unless they have a destination-sequenced label with a sequence number that

is larger than the one in the RREQ.

82

3.4 Application to DSR and AODV

FLR can be simplified by using node labels directly instead of feasible labels. With

such simplification, a node simply maintains its current label, next hop and predecessor set for

a destination; a RREQ carries the smallest label of any of the nodes that relayed the RREQ

(MLreq
D) instead of MFLreq

D ; and ALC, SLC, MLC and RLC are implemented using MLreq
D

instead of MFLreq
D . This simplification is practical when links have unit cost only.

The above simplification can be used in two ways related to DSR. One approach

consists of using the simplified signaling of FLR, which essentially adds MLreq
D in RREQs to

DSR’s signaling and requires using ALC, SLC, MLC and RLC, together with source-routed

data packets. The other approach consists of using FLR’s simplified signaling together with the

packet filtering described in Section 3.3.5, so that loop-free packet forwarding can be enforced

using only the destinations of the data packets on a hop-by-hop basis.

The simplified FLR can also be used in the context of a “path-oriented” AODV em-

bodiment in which destination sequence numbers are not used, and path information is used

together with ALC, SLC, MLC, RLC. This application of FLR requires that nodes implement

data-packet filtering based on predecessor information.

The performance results presented in Section 3.7 for networks in which all link costs

are equal are indicative of how a simplified FLR approach would perform. The main reason

why FLR performs so much better than DSR and AODV is that nodes apply SLC to reply to

RREQs and ALC to accept RREPs in FLR and not in DSR and AODV. In DSR, this results in

source routes leading to relays that must drop packets, and in AODV this translates into forcing

83

the destinations to reply to RREQs more often than in FLR.

If data-packet filtering based on predecessor information cannot be implemented in

a MANET in which RERRs are delivered unreliably, then another variant of a simplified FLR

can be adopted to obtain a “path-oriented” AODV. Specifically, FLR based on the above simpli-

fication, destination-sequenced labels, and RLC-DL can be used in the context of AODV with

path accumulation (AODV-PA) [11].

The performance results reported for AODV-PA by Gwalani et al. [11] indicate that

AODV-PA and AODV have similar packet-delivery ratios, while AODV-PA provides slightly

better performance than AODV in terms of normalized routing load and delays. On the other

hand, our results in Section 3.7 show that FLR with destination-sequenced labels provides sub-

stantial performance improvements over AODV-PA, and over the base version of FLR. Hence,

it is apparent that the use of destination-sequenced labels not only allows intermediate nodes to

be able to reply to RREQs but also is able to determine the freshness of the labels.

3.5 FLR Example

Figure 3.1(a) shows the directed acyclic successor graph for destination E in a six-

node network. The feasible labels for destination E at each node are shown for time t1 next to

each node. Nodes A, B, D and F have active flows for node E. The label for destination E at

the nodes is not shown separately, because the feasible labels are equal to the assigned labels.

Node C does not have an active route to node E and therefore has an invalid label

L∞. The labels marked in the figure are composed of tuples of (id, cost). The predecessor sets

84

maintained at nodes F and B are PSF
E = {B} and PSB

E = {A}, respectively.

3.5.1 Update Activity

Link e2 fails at time t > t1, and node B broadcasts a RERR. This RERR may not

be received by A due to the unreliability of the MAC layer, but node B removes A from PSB
E .

Node B now initiates a new computation (B, IDB) searching for a route for E using a feasible

label {(B, 1), (F, 1), (E, 0)}.

When node A receives B’s RREQ, it cannot satisfy SLC and must relay the RREQ.

The RREQ relayed by A is dropped by B, because it cannot engage itself again in computation

(B, IDB). B’s RREQ is relayed by node C , because node C does not have an active route and

therefore SLC cannot be satisfied.

Node D generates a RREP when it receives the RREQ relayed by C , because it sat-

isfies SLC. The RREP from D carries the label LrpD
E = {(D, 1), (E, 0)}. Node C can accept

this RREP, and updates its routing table, setting LC
E = FLC

E = {(C, 5), (D, 1), (E, 0)}. Node

C adds node B to its predecessor set PSC
D for D and forwards the RREP carrying the label

{(C, 5), (D, 1), (E, 0)}.

When node B receives the RREP from C , it updates its routing table and makes

sBE = C . Given that B already sent a RERR for destination E to is predecessors, it can reset its

feasible label. Accordingly, node B sets LB
E and FLB

E to {(B, 1), (C, 5), (D, 1), (E, 0)}. The

feasible labels for destination E at time t2 are shown in Fig.3.1(b).

If on the other hand, B was performing a local repair, then it would have sent a RERR

to A only after processing the RREP from C . The RERR would not be sent if C had offered a

85

label satisfying ALC with local repair, in which case A would not have received a RERR from

B.

E

F

e2

1

1
1

5 1

e1

1

{(A,1),(B,1),(F,1),(E,0)}

{(B,1),(F,1),(E,0)} {(D,1),(E,0)}

{(F,1),(E,0)}

{(E,0)}

DA B C

(a) Time t1

F

{(B,1),(C,5),(D,1),(E,0)} {(C,5),(D,1),(E,0)} {(D,1),(E,0)} {(E,0)}

{(A,1),(B,1),(F,1),(E,0)}

1 1 5 1

1
1

e2

e1

{(F,1),(E,0)}

EA B C D

(b) Time t2

F

C

1

{(A,1),(B,1),(F,1),(E,0)}

{(F,1),(E,0)}

{(C,5),(A,1),(B,1),(F,1),(E,0)}

{(D,1),(E,0)} {(E,0)}

{(B,1),(C,5),(D,1),(E,0)}

e1

5

1

1
1

1

e2

EA B D

(c) Time t3

Figure 3.1: Illustration of FLR.

86

A B C D E

F

e2

1

1
1

5 1

e1

1

{(A,1),(B,1),(F,1),(E,0)}/SN:1

{(F,1),(E,0)} /SN:1

{(E,0)}{(D,1),(E,0)}/SN:1

SN:1

{(B,1),(F,1),(E,0)}/SN:1

(c) Time t1

A B C D E

F

{(E,0)}

1 1 5 1

1
1

e2

e1

{(A,1),(B,1),(F,1),(E,0)}/SN:1

{(F,1),(E,0)}/SN:1

{(B,1),(C,5),(D,1),(E,0)}/SN:2 {(C,5),(D,1),(E,0)}/SN:2 {(D,1),(E,0)}/SN:2

SN:2

(c) Time t2

Figure 3.2: Illustration of FLR with destination-sequenced labels

3.5.2 Loop Detection

To illustrate loop detection in FLR route errors are sent unreliably, let us assume that

the RERR sent by B was not received by node A. Node A still considers node B as its successor

for E according to its routing table, and the ordering of the feasible labels along the path to E

has been violated due to the undelivered route error.

Assume that node C becomes a source for destination E time t2 + ε. Because node

C has an active route to E, a new RREQ is not started, and if forwards data packets to its next

hop D. Now, at time t > t2 + ε, link e1 fails. Node C detects the link failure and notifies B

through a broadcast RERR that is not received by B. Node B maintains C as its next hop to

destination E, and node C has removed node B from PSC
E .

Now node C starts a new route computation (C, IDC) and issues a new RREQ with

87

feasible label {(C, 5), (D, 1), (E, 0)}. Node A satisfies SLC with a lower cost label {(A, 1),

(B, 1), (F, 1), (E, 0)} and issues a RREP with its current label for E. Node C accepts A’s

RREP because it satisfies ALC and makes A its successor for destination E, creating a routing-

table loop among nodes A,B and C .

Fig. 3.1(c) shows the directed successor graph for destination E at time t3 after node

C updates its routing table. However, this loop cannot persist, because A is no longer in the

predecessor list of B, which forces B to drop any data packet it receives from A and to send a

RERR to A in each case. If A never sends a data packet, then the routing-table loop is broken

when node A’s route entry expires. The same argument applies between nodes B and C .

3.5.2.1 Destination-Sequenced Labels

Fig. 3.2(d) shows the state of the network at time t1 following the same sequence of

events as in the previous example of loop-detection when FLR is optimized with destination-

sequenced labels as described in Section 3.3.4.5 using Approach 2. Here, nodes store a destination-

sequence number for D denoted by D in-addition to their label . When link e2 fails, node B

initiates a new RREQ computation with an MFDL = [SN = 1, {(B, 1), (F, 1), (E, 0)}].

However, node C cannot answer it and because it violates the ordering (i.e., LC
E = ∞). The

reset bit ’R’ in the RREQ is set when node C relays the RREQ and forces node D to relay as

well. Node E increments its SN from 1 to 2 on receiving the RREQ because the ’R’-bit is set

and the MDFL carries a SN = 1, and issues a RREP with DL = [SN = 2, {D}] and the

’D’-bit set. Node D can accept the RREP because SN rep
E = 2. Similarly, node D accepts the

RREP as the ’D’-bit is set and forwards it to B. Fig. 3.2(e) shows the labeling of the nodes at

88

time t2 when B re-establishes a route to E.

To show how FLR with destination-sequenced labels can avoid the formation of tem-

porary loops even when route errors cannot be unreliably delivered, assume that node B’s RERR

has not been delivered to A at time t2 and node A still considers B as next hop to E. Note that

even though the ordering of the FL’s is violated, the associated destination sequence numbers

increase along the path towards the destination and the ordering of the labels is still valid when

the sequence numbers are equal. As in the previous example of loop-detection, if link e1 fails,

node C cannot accept a DL from node A because SNC
E = 2 > SNA

E = 1. The destination-

sequence number associated with the label allows nodes to determine which labels to trust and

hence no loops are formed.

3.6 Analysis of FLR

We prove that FLR as described in Sections 3.3.1 to 3.3.3 is loop-free at every instant

if reliable RERRs can be delivered. We additionally show that, if RERRs must be sent unre-

liably, temporary routing-table loops caused by undelivered RERRs are broken within a finite

time and data packets are never forwarded in a loop.

Although, we do not analyze the correctness of FLR with destination-sequenced la-

bels, it directly follows from the correctness of LDR [8] because FLR uses feasible labels in-

stead of feasible distances both of which share the same properties.

89

3.6.1 Loop-Freedom in FLR

Theorem 12. In FLR, RREQs and RREPs do not loop.

Proof. For a given route computation (A, IDA), a node may be passive, engaged, or active. A

node can become active in a route computation at most once, because it maintains the identifiers

it assigns to the RREQs it originates. A router can engage in a route computation only when the

the corresponding RREQ does not include the node in the path traversed by the RREQ. Hence,

any RREQ can traverse only a directed acyclic graph (DAG), which may be a directed tree if no

node relays the RREQ more than once, and any path traversed by a RREQ is free of loops.

Because RREPs are forwarded along the reverse path traversed by the corresponding

RREQs, it follows that the RREPs must traverse loop-free paths. Furthermore, if the source

route request (SRREQ) optimization is used, the SRREQ travels the loop-free path specified in

the SRREQ by its source.

Theorem 13. FLR ensures that, if RERRs are sent reliably and path P = {nk, ..., n1} exists at

some point in time as defined by the successor entries of the nodes along the path, it is true that

FLni
n1

> FL
ni−1
n1 , for i ∈ [2, k].

Proof. For path P to exist at a given time t, it must be true that all nodes in P have a valid

successor. According to ALC, node ni can make ni−1 its successor for destination n1 if it

received a RREP from ni−1 and either Lrep
n1 < FLni

n1
or ni sent a RERR reliably to every node

in its predecessor set, which forces all such nodes to stop using ni as their successor for n1.

Hence, if P exists at time t, every node ni (i ∈ [2, k]) must have accepted a RREP from ni−1

with Lrep
n1 < FLni

n1
. Because FL

ni−1
n1 ≤ L

ni−1
n1 = Lrep

n1 , the theorem is true.

90

Theorem 14. FLR is loop-free at every instant if RERRs are delivered reliably.

Proof. Let node I initiate a RREP for destination D and let the RREP traverse the path P={n1,...,nj},

where n1 = I (maybe the destination D) and nj = A. Let the path from I to D be Q={m1, ...,mk},

where m1= D and mk = I and Q can be null if n1 = D.

For a loop to form, node A must be on the path Q and must change successors after

processing the RREP generated by I . From Theorem 12, path P must be loop free. Thereby, if

n1 = D, node A cannot form a loop after processing I’s RREP. If n1 6=D we must show that it

is impossible for A to be on I’s successor graph.

Assume that, at time t0, path Q exists and is loop free and at time t1 node A changes

successors after processing I’s RREP. Node I sends its RREP along the loop-free path P to

A, carrying Lrep
D = LI

D(t0). Let node A be some node mi, 1 < i < k and let mi+1 be its

predecessor. From Theorem 13 we have that FLI
D(t0) > FLA

D(t0). Node A’s routing-table

entry for destination D can be in one of the following states.

Case (i): Node A has an invalidated route, which means A reliably notified its pre-

decessor mi+1, and the path Q no longer exists. Hence, node A cannot form a loop when it

processes the RREP from I .

Case (ii): Node A has an active route. We know that Lrep
D ≥ LI

D(t0) ≥ FLI
D(t0) >

FLA
D(t0). At any time t0 ≤ t ≤ t1, node A’s feasible label FLA

D could have only decreased

if A lies on path Q within this time interval. Hence, FLA
D(t1) ≤ FLA

D(t0). Now Lrep
D ≥

FLA
D(t1), so node A will not process the RREP, because it does not satisfy ALC. If A increased

its feasible label when it chose a new successor, then it must have reliably notified mi+1 with a

RERR, which reduces to case (i). Therefore, no loop cannot form in this case.

91

Case (iii): Node A has an invalidated route and is performing a local repair operation.

As discussed for Case (ii), ALC is not satisfied at A when I’s RREP is received. Although node

A processes the RREP, it must send a RERR reliably to its predecessor set because FLA
D(t1) ≤

Lrep
D . Hence, the path Q is no longer valid, because node mi+1 stops using node ni as successor.

Therefore, no loops can form in this case.

We now prove that, if an undelivered RERR causes a loop after nodes reset their

feasible label according to RLC or ALC, then data packets are never forwarded along the loop

and the routing-table loop is broken within finite time.

Theorem 15. FLR ensures that data packets never flow in loops and routing-table loops can

exist only temporarily.

Proof. A routing-table loop can form only when the ordering criteria of Theorem 13 is violated.

This means that along a path P = {nk, ..., n1} for destination n1, ∃i, i ∈ [2, k − 1], FL
ni+1
n1 <

FLni
n1

. Node ni or node ni+1 can never update its routing table to create this condition, unless

node ni sent a RERR as per ALC or RLC before increasing its feasible label FLni
nk

.

For the ordering violation to occur, ni+1 must not have received the RERR. Before

increasing the feasible label at ni, it removes ni+1 from the predecessor list. With the ordering

criteria violated, a loop can be formed at a later time if node ni’s route request is replied to by a

node upstream of ni+1 or node ni+1 itself. Assume such a loop is formed. If ni receives a data

packet from ni+1, then node ni must drop the data packet, and send a RERR for destination n1

to ni+1, because it received a data packet from a node that is not in the predecessor set for n1.

If node ni+1 receives the RERR, it invalidates its route to n1 and the loop is terminated. On

92

the other hand, if ni+1 never sends a data packet, then the route entry expires and it no longer

uses ni as its next hop. Therefore, the routing-table loop terminates as both events are bounded

by a finite-time duration, and data packets are never forwarded in loops even if the underlying

routing table has loops.

3.6.2 Correct Termination in FLR

We now prove that any source is able to establish a route to a destination within finite

time if there is a physical path between the source and the destination, and the network is stable

and error-free after an arbitrary sequence of topology changes. We assume that reliable RERRs

can be delivered in the network. Also, we show that when a destination is partitioned from a set

of nodes in a connected component, then all nodes in the connected component will invalidate

their routes in finite time.

Lemma 1. If an intermediate node I initiates a RREP for destination D using SLC in response

to a RREQ from A that traversed a path P , then the concatenation of path P and the successor

path from I to D is loop-free.

Proof. Let the RREQ initiated by A traverse the path P={n1,... nk−1} before it is received

by I . From Theorem 12, it follows that path P is loop-free. Assume that node I has a path

Q={m1,...,mk−1} to destination D, which is its current successor path for the active route. We

have to show that any node n ∈ P is not the same as any m ∈ Q for the lemma to be true. If Q

is empty, then the lemma is trivially true.

The proof for the case where Q is not empty is by contradiction. When the RREQ is

received by node I , it carries the minimum of the feasible labels (MFLreq
D) of the nodes along

93

the path P . Because I has an active route to D, by Theorem 13, we have along path Q from I to

D that FLI
D >FLm1

D > FLm2
D >... >FL

mk−1

D > FLD
D. At any instant, we have LI

D ≥ FLI
D.

For the RREQ to satisfy SLC at node I , we must have LI
D < MFLreq

D . However, if any node

m ∈ Q is the same as any node n ∈ P , we will have LI
D > MFLreq

D and node I cannot initiate

the RREP satisfying SLC. Therefore, the concatenation of path P and successor path of I must

represent a loop-free path to the destination.

Theorem 16. In an error-free stable connected network, FLR ensures that a node A starting a

route computation (A, IDA) for a destination D establishes a successor path to the destination

within a finite time.

Proof. We consider the first RREP rpA that reaches A for the route computation (A, IDA). If

multiple RREPs are received, then node A can switch to better routes (i.e., routes with smaller

labels).

Let node A start a new route computation (A, IDA) for destination D, by sending a

RREQ, and let that RREQ traverse the path P = {n1..nk−1} before arriving at node nk (which

can be D) which satisfies SLC. From Lemma 1, if nodes switch along path P concatenated with

the successor path from nk−1, they have a loop-free valid successor path to the destination.

Let node nk generate a RREP to the RREQ from source A. The proof must show that

when nodes relay the reply along the reverse path, nodes that are engaged in the computation

(A, IDA) after have a valid successor path to the destination after processing the reply.

We first prove that A establishes the successor path using the RREP relayed along path

P when no node along the path P is affected by another route discovery event for D during the

94

route computation (A, IDA). In this case, no node along P satisfies SLC with A’s feasible

label, for otherwise that node would have responded to the RREQ instead of nk. Each node

n ∈ P must be in one of three states: (i) n has no information about D, (ii) n’s information is

invalid, or (iii) n has an active route but SLC could not be satisfied. In Case (i), node n may use

any RREP sent by nk. In Case (ii), node n has an invalid route, which means that n has notified

any predecessors reliably through a RERR and node n can process the RREP and update its

route entry for D. In Case (iii), node n can process the RREP and switch successors if the reply

offers a smaller label; if node n does not switch successors, then it has a better route to D. In

all three cases, node n will then forward a new RREP with its current label and forward it along

the reverse path carried in the RREP. Node A will receive the RREP, because nodes in all states

forward a RREP along the reverse path of P .

We now show that simultaneous route discovery events for destination D do not affect

the route computation (A, IDA) and nodes along path P relay a RREP to A. The following

three cases represent the events that can interfere with the route computation of (A, IDA).

Case 1: During the computation period of (A, IDA), one or more nodes ni ∈ P

are engaged in route computations (mi, IDmi
) for destination D, where mi /∈ P . Denote

by rpA the RREP initiated by route computation (A, IDA) and by rpm the set of RREPs for

(mi, IDmi
). From the previous discussion, node ni on processing rpA or any rpm, may update

its routing table and forward a new RREP along the reverse path. If node ni receives rpA before

any rpm, the route computation (A, IDA) has completed at node ni. On the other hand, if rpA

was received after a rp ∈ rpm, then this reduces to case (iii) above, when there are no other

simultaneous route discovery events and node ni may improve its route after processing rpA. In

95

either sequence of events, node ni forwards a new RREP with its current label along the reverse

path to A, which ensures that the route computation (A, IDA) is not affected by actions at ni.

Case 2: Nodes mi ∈ P become active during the route computation period of

(A, IDA). A node mi becoming active for destination D is equivalent to the node being en-

gaged in a new route computation for D. This reduces to Case 1 and the route computation for

(mi, IDmi
) cannot interfere with that of (A, IDA).

Case 3: One or more nodes mi ∈ P are engaged and one or more nodes mj ∈ P are

active for route computations to destination D. From Case 2, nodes that are active for a route

computation to destination D reduce to the case of being engaged in the route computation.

Hence, we can consider mj ∈ P to be engaged. So from Case 1, the route computations cannot

interfere with that of (A, IDA).

Therefore, the nodes along path P engaged in the route computation (A, IDA) are

not affected by simultaneous route discovery events for destination D. Node A receives the

RREP forwarded along the reverse path of P and establishes a successor path to the destination

within a finite time given that each message is exchanged within a finite time.

Theorem 17. In a connected component, all nodes partitioned from a destination will invalidate

their routing entries for that destination within a finite time.

Proof. Let GD be a set of nodes that belong to a connected component partitioned from D.

Assume node D is inaccessible to the nodes in GD after time t. Consider the case in which a

node i ∈ GD never invalidates its route after a time ti > t. Because FLR is loop-free at every

instant, after a finite time tf ≥ t, all paths in GD must lead to nodes that have invalidated their

96

routes (set LD = ∞). And, these nodes must have sent a RERR to their predecessors on this

path and it must eventually be received by node i. Therefore, for node i to have a valid route

at time tf , it must re-learn its route by receiving a RREP from a neighbor that satisfies ALC,

and this must happen in succession for an infinite number of times after t. Assuming a stable

topology after time t, when any node m ∈ GD joins the directed acyclic successor graph for D

by assigning itself a label containing i (i.e., Lm
D 3 .. ⊕ i ⊕ .. ⊕ D), node i cannot accept new

RREPs from m because ALC cannot be satisfied (i.e., i ∈ Lm
D). Therefore, for node i to be able

to re-learn a route for D an infinite number times in succession after time t, there must exist an

infinite number of paths (labels) from node i to j which is not possible because GD has a finite

number of nodes. Hence, every node i ∈ GD will invalidate its route a finite time after time

t.

3.7 Performance Comparison

We present results for FLR (without any optimizations) over varying loads and mo-

bility. The protocols used for our comparison with FLR are DSR, AODV, and OLSR, which

are representative of the state of the art in routing protocols for MANETs. We also simulate

two variants of FLR (from Section 3.3.4.5) : (i) FLR-DL (FLR with destination-sequenced la-

bels based on Approach 2), (ii) FLR-DL-LR (FLR-DL with the one-hop local repair scheme).

To validate our claims that performance can be improved with destination-sequenced labels

and be applied to current MANET routing protocols, we simulate AODV-PA (AODV with path

accumulation). We evaluate the performance of our local repair scheme by comparing FLR-DL-

97

Table 3.2: Performance average over all pause times for 50 nodes network for 10-flows and
30-flows (random)

Protocol Flows Delivery Ratio Latency (sec) Net Load Data Hops
FLR 10 0.994±0.002 0.019±0.003 0.256±0.060 2.500±0.171
FLR-DL 10 0.980±0.076 0.022±0.004 0.350±0.099 2.450±0.258
FLR-DL-LR 10 0.994±0.002 0.023±0.004 0.381±0.100 2.487±0.182
AODV 10 0.994±0.002 0.016±0.003 0.270±0.066 2.576±0.179
AODV-LR 10 0.994±0.002 0.017±0.004 0.266±0.067 2.580±0.180
AODV-PA 10 0.994±0.002 0.017±0.005 0.268±0.065 2.583±0.190
DSR 10 0.940±0.027 0.041±0.047 0.220±0.095 2.677±0.185
OLSR 10 0.887±0.040 0.012±0.001 1.937±0.220 2.456±0.175
FLR 30 0.820±0.051 0.491±0.180 2.005±0.722 2.717±0.268
FLR-DL 30 0.845±0.049 0.582±0.232 2.456±0.819 2.744±0.254
FLR-DL-LR 30 0.865±0.055 0.518±0.259 1.991±0.828 2.776±0.270
AODV 30 0.765±0.055 1.010±0.356 4.423±1.289 2.951±0.324
AODV-LR 30 0.770±0.056 0.965±0.333 4.269±1.264 2.929±0.309
AODV-PA 30 0.754±0.055 1.092±0.351 4.343±1.191 3.002±0.336
DSR 30 0.683±0.059 4.760±1.073 0.410±0.140 3.625±0.308
OLSR 30 0.798±0.034 0.883±0.311 0.713±0.069 2.478±0.161

Table 3.3: Performance average over all pause times for 100 nodes network for 10-flows and
30-flows (random)

Protocol Flows Delivery Ratio Latency (sec) Net Load Data Hops
FLR 10 0.989±0.004 0.043±0.007 0.838±0.251 3.671±0.340
FLR-DL 10 0.988±0.004 0.064±0.012 1.541±0.440 3.634±0.308
FLR-DL-LR 10 0.987±0.004 0.062±0.012 1.452±0.420 3.650±0.307
AODV 10 0.988±0.004 0.036±0.009 0.897±0.236 3.744±0.293
AODV-LR 10 0.988±0.004 0.035±0.008 0.872±0.221 3.767±0.293
AODV-PA 10 0.988±0.004 1.682±0.445 0.897±0.238 3.803±0.311
DSR 10 0.876±0.050 0.099±0.057 0.859±0.353 4.257±0.317
OLSR 10 0.821±0.063 0.022±0.002 11.795±1.575 3.583±0.256
FLR 30 0.648±0.047 0.874±0.188 8.347±1.795 4.355±0.370
FLR-DL 30 0.699±0.059 0.966±0.227 9.492±2.096 4.261±0.340
FLR-DL-LR 30 0.706±0.040 0.925±0.194 8.324±1.537 4.290±0.346
AODV 30 0.608±0.051 1.455±0.385 18.298±13.069 4.751±0.434
AODV-LR 30 0.592±0.044 1.617±0.538 21.339±15.523 4.868±0.463
AODV-PA 30 0.582±0.052 1.682±0.445 16.889±7.394 4.918±0.417
DSR 30 0.618±0.049 5.125±0.782 1.243±0.405 6.141±0.499
OLSR 30 0.612±0.041 3.371±0.532 5.423±0.669 4.014±0.277

98

Table 3.4: Performance average over all pause times for 50-nodes and 100-nodes network with
30-flows (fixed)

Protocol Flows Delivery Ratio Latency (sec) Net Load Data Hops
FLR 50 0.758±0.089 0.584±0.342 2.858±1.313 2.903±0.386
FLR-DL 50 0.803±0.070 0.629±0.357 3.153±1.160 2.864±0.345
FLR-DL-LR 50 0.803±0.072 0.622±0.354 2.918±1.166 2.933±0.401
AODV 50 0.738±0.083 0.866±0.473 5.044±1.874 3.084±0.424
AODV-LR 50 0.735±0.082 0.865±0.457 5.095±1.861 3.095±0.420
AODV-PA 50 0.727±0.082 0.963±0.505 4.942±1.739 3.149±0.441
DSR 50 0.581±0.081 3.422±0.813 0.430±0.156 3.809±0.406
OLSR 50 0.772±0.042 0.842±0.413 0.727±0.072 2.534±0.187
FLR 100 0.623±0.100 0.735±0.314 9.307±3.622 4.504±0.707
FLR-DL 100 0.682±0.074 0.818±0.296 9.976±2.763 4.338±0.557
FLR-DL-LR 100 0.707±0.074 0.729±0.278 8.143±2.439 4.352±0.548
AODV 100 0.608±0.088 1.060±0.402 16.812±8.743 4.731±0.696
AODV-LR 100 0.595±0.094 1.133±0.440 19.050±12.564 4.882±0.738
AODV-PA 100 0.572±0.085 1.322±0.480 16.679±6.446 4.957±0.695
DSR 100 0.476±0.099 3.865±1.150 1.208±0.453 6.177±0.733
OLSR 100 0.585±0.066 2.761±1.062 5.541±0.811 4.074±0.452

LR against AODV enhanced with local repair [19]. We could not simulate DSR’s local repair

scheme because it requires a pre-defined salvage count to break loops, which is not specified in

the draft. Simulations are run in Qualnet[44]. The parameters are set as Perkins et al describe

in their work [41].

3.7.1 Simulation Setup

Simulations were performed on two scenarios, a 50-node network with terrain dimen-

sions of 1500m x 300m, and a 100-node network with terrain dimensions of 2200m x 600m.

Traffic loads were CBR sources with a data packet size of 512 bytes. Load was varied by using

10 flows (at 4 packets per second) and 30 flows (at 4 packets per second). We use two sets of

traffic characteristics: (i) random flows have a mean length of 100 seconds, distributed expo-

nentially, and (ii) fixed flows that last the entire simulation time. For the fixed flows, we only

99

show results for 30-flows because we did not notice any shift in trend from the one observed for

the 10-flows scenario with exponential flow distribution. The MAC layer used was IEEE 802.11

with a transmission range of 275m and throughput 2 Mbps. The simulated time is 900 seconds.

Node velocity was set between 1 m/s and 20 m/s. Flows have a an exponentially distributed

length with a mean of 100 seconds. Each combination (number of nodes, traffic flows, scenario,

routing protocol and pause time) was repeated for nine (9) trials using different random seeds.

3.7.2 Performance Metrics

We address four performance metrics. Delivery ratio is the ratio of the packets deliv-

ered per client/server CBR flow. Latency is the end to end delay measured for the data packets

reaching the server from the client. The network load is the total number of control packets

divided by the number of received data packets. Data hops is the number of hops traversed by

each data packet (including initiating and forwarding) divided by the total number of received

packets in the network. This metric takes into account packets dropped due to forwarding along

incorrect paths, and provides a measure of the quality of the routes.

3.7.3 Performance Discussion

Tables 3.2 and 3.3 summarize the results of the different metrics by averaging over

all pause times for the 50 and 100 node networks with random exponentially distributed flows.

Table 3.4 summarizes the same set of metrics for 50 and 100-node networks with fixed flow

distributions. The columns show the mean value and 95% confidence interval. All our per-

formance discussions focus on the average case since the confidence intervals overlap atleast

100

slightly in most cases. The packet delivery ratio, the end-to-end delay, and the control overhead

over various pause times for 50-node and 100-node networks with 30-flows is shown for ran-

dom exponential flows in Figures 3.5 and 3.3, and for fixed flows in Figures 3.6 and 3.4. The

vertical bars in the graphs indicate the 95% confidence intervals.

From the summarized results, in the 10-flow scenarios (exponentially distributed traf-

fic), the performance metrics for the FLR and AODV variants do not show any notable dif-

ference. However, both DSR and OLSR exhibit poor packet delivery, which indicates that

corrupted topology information due to mobility affects the accuracy of the routes in both the

protocols even at very light-loads. The problem with DSR lies in the use of source-routes to

deliver packets. Source-routes are invalidated due to topology changes and data packets are

forced to be dropped by intermediate nodes. This problem is aggravated by the use of an opti-

mization to learn source-routes carried in data packets that can be stale. OLSR’s performance

suffers from the temporary loops that can exist until the latest topology change is disseminated

to all nodes in the network. The loops cause unwanted transmission of data packets, thereby

congesting the physical medium which in-turn affects the dissemination of topology updates.

The results in the 30-flow scenarios show much more disparity in the average per-

formance of the protocols although most results lie in overlapping confidence intervals. The

packet delivery graphs across various mobility pause times (Figs. 3.6(a), 3.5(a), 3.4(a), 3.3(a))

show that FLR has a very consistent performance, and performs far better in high-mobility sce-

narios. The reason for the performance can be attributed to more intermediate replies. This

serves two purposes: Routes are recovered more quickly, and costly RREQ floods to the des-

tination, which in turn can cause more congestion, are avoided. The performance of AODV

101

suffers in these scenarios, where RREQs mostly get answered only by the destination. This is

further aggravated by the congestion caused by these floods. OLSR, and DSR benefit from very

low-mobility scenarios where the topology information stays more accurate. OLSR performs

more consistently than DSR and it has a slightly higher average packet delivery than FLR in the

50-nodes, 30-fixed flows scenario. However, this is largely due to its better performance under

low-mobility. FLR and its variants exhibit the lowest latency characteristics across all scenar-

ios. The control overhead of FLR and its variants are lesser than that of AODV and its variants.

Although, OLSR and DSR have smaller control overhead than FLR and AODV, they cannot

be directly compared. The reason is that OLSR’s control overhead is independent of the traffic

flow characteristics, and DSR floods fewer RREQs because of the optimization through which

it can learn source-routes carried in data packets. A higher control overhead usually results in

congesting the medium, which in turn causes delay when transmitting data packets. The low

delay characteristics of FLR can attributed to its control overhead which is lesser than AODV.

Despite the low control-overhead, the delays in OLSR are caused by looping of data packets

and buffering of data packets in DSR as delivery using new source-routes are being attempted.

The termination issues associated with AODV and its variants can be seen in the per-

formance of the 100-nodes scenario with 30-flows. We were unable to obtain tight confidence

intervals for the control overhead of AODV in the summarized results. We believe that the

reason for the excessive control overhead and poor packet delivery (Figs. 3.4 and 3.3) in

the scenarios with very high mobility are due to the counting-to-infinity and temporary loops

[15] [14] that can occur in AODV when there is heavy congestion of the wireless medium.

FLR and its variants do not display any of this behavior. In these cases, the FLR variants with

102

destination-sequenced labels have better packet delivery and tighter confidence intervals than

FLR, because of the absence of temporary loops, which FLR blocks but does not prevent with

an unreliable MAC.

More interesting to note is the relative performance between FLR and its variants

which highlights their specific properties. The two FLR variants based on destination-sequenced

labels exhibit a better average performance than FLR, and this difference is much more signifi-

cant in the heavy-load (30-flows), 100-nodes scenarios. This shows that route errors might not

be delivered reliably with increasing congestion and there is more chance for the ordering of the

labels to be violated in FLR, thereby, resulting in temporary loops or bad routes. This situation

does not occur when destination-sequenced labels are used because the RREQs are relayed with

a ’reset’ and is answered by the destination with a higher sequence number. This effect is also

noticeable in the increased control overhead and delay of the DL-based variants compared to

FLR. The results show the trade-offs between operating FLR based on packet-filtering in net-

works with low-congestion, where the performance is almost equivalent to using DL’s; however,

or in large networks with heavy-loads, where the performance of FLR is affected due to tempo-

rary loops. This trade-off is also evident because FLR has a lower control overhead and latency

compared to its variants indicating that the lack of ’resets’ are beneficial when downstream

intermediate nodes reply correctly, but can be bad when upstream nodes answer incorrectly.

AODV with path accumulation (AODV-PA) performs about the same as AODV. This

is due to the fact that the optimization allows route entries to be setup for relay nodes, and

this will only improve performance when there are flows towards the relay nodes within the

small window of time before the routes expire. These results are in direct correlation with the

103

performance results shown in [11], where it was found to show improvements only in huge

networks with many flows and was proposed as an optimization in such a case. Given that

FLR-DL requires the same signalling as AODV-PA, its performance demonstrates that using

path information as the basis for labeling from which ordering is derived is much more effective

than simply attempting to learn routes to relay nodes and discarding the path information.

The local repair scheme of FLR-DL-LR shows a noticeable improvement over FLR-

DL, with improvements in packet delivery across most scenarios and reduced latency and con-

trol overhead more closer to that of FLR. The simple one-hop query allows intermediate nodes

to find an alternate path without requiring to inform the source which then will start a new

RREQ flood. This scheme is much more effective than the local repair scheme of AODV, which

shows no difference from that of AODV. In FLR-DL-LR, the intermediate node either finds

a neighbor that has a lower cost label with the same sequence number or a higher sequence

number, or fails to repair. In contrast, the AODV local repair scheme performs a ttl-controlled

RREQ flood to search for the destination in the vicinity, and this is further limited by checks

required before performing a local-repair, such as knowing the hop-count to the source.

The data hops metric provides a measure of the accuracy of the routes used for

forwarding. The data hops metric reflects the number of hops traversed by each data packet

whether or not it is delivered. By correlating the packet delivery ratio with the data hop count, a

notion of how many packets were actually delivered to the destination can be gauged. All pro-

tocols have statistically equivalent data hops across all scenarios, which means that in protocols

delivering less packets, some of the packets are dropped at the intermediate nodes. In AODV,

packets are dropped at intermediate nodes due to falsely triggered route failures or temporary

104

loops with heavy congestion. Data packets in OLSR can temporarily traverse loops before being

delivered or can get dropped due to lack of routes. Stale source routes in DSR, due to mobility,

cause packets to be dropped at the intermediate nodes. The data hops of FLR and its variants

in correlation with the packet delivery ratio shows the high accuracy of the active routes, and

FLR-DL’s route accuracy is better than FLR due to instantaneously loop-free routing tables.

3.8 Conclusions

We extended sufficient conditions for loop-free routing previously stated for distances

to labels that are ordered lexicographically. We introduced the feasible label routing (FLR)

protocol as an illustration of how loop-free routing can be attained using path information on

demand while allowing data-packet forwarding on the basis of the packet destinations only.

In FLR, nodes are ordered according to their labels to a destination to provide instan-

taneous loop-freedom. A node resets its label (path) for a destination when its route fails. Reset-

ing labels requires a reliable route error message to predecessors. To cope with the case in which

the MAC layer of a MANET does not support reliable transmissions efficiently, we proposed

using a local data-packet filtering action to detect and break routing-table loops caused when

RERRs are sent unreliably. Destination-sequenced labels created by associating per-destination

sequence numbers with labels can be used in FLR to maintain instantaneously loop-free routing

tables. Simulation results show that FLR and variants based on destination-sequenced labels

outperform DSR, AODV, AODV-PA (AODV with path accumulation), and OLSR.

105

AODV AODVPA AODV−LR FLR FLR−DL FLR−DL−LR DSR OLSR

0 50 100 200 300 500 700 900
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
−10

0

10

20

30

40

50

60

70

80

90

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 3.3: Random (100-nodes, 30-flows, 120 pps)
106

AODV AODVPA AODV−LR FLR FLR−DL FLR−DL−LR DSR OLSR

0 50 100 200 300 500 700 900
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
0

10

20

30

40

50

60

70

80

90

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 3.4: Fixed (100-nodes, 30-flows, 120 pps)
107

AODV AODVPA AODV−LR FLR FLR−DL FLR−DL−LR DSR OLSR

0 50 100 200 300 500 700 900
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

8

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 3.5: Random (50-nodes, 30-flows, 120 pps)
108

AODV AODVPA AODV−LR FLR FLR−DL FLR−DL−LR DSR OLSR

0 50 100 200 300 500 700 900
0.4

0.5

0.6

0.7

0.8

0.9

1

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
0

2

4

6

8

10

12

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 3.6: Fixed (50-nodes, 30-flows, 120 pps)
109

Chapter 4

Routing using trusted topology information

4.1 Introduction

Although a variety of on-demand routing protocols based on topology information

have been proposed, none of these schemes use topology information as the basis to ensure that

loop-free routing tables are maintained, and, also, no solution exists that provides instantaneous

loop-free routing without requiring source-routed packets, data-packet filtering, or reliable in-

formation exchanges among neighbors. In this chapter, we introduce the Link Vector Routing

(LVR) protocol for loop-free on-demand routing in ad hoc networks. LVR differs from all prior

routing protocols based on topology information in that nodes communicate and store informa-

tion about those links that should not be trusted when rerouting decisions are made, in addition

to the information about known links in the network. Section 4.2 presents and proves a suf-

ficient condition for loop-freedom using link vectors specifying the paths nodes use to reach

destinations and the set of links that caused route changes and cannot be trusted. Section 4.3

110

details the principles of operation and control signaling of LVR, which is remarkably simple:

As in prior schemes, routers use RREQs to discover valid path information and RREPs to pro-

vide the requested path information to sources of data packets. However, LVR also uses RREQs

and RREPs to disseminate information about those links that should not be trusted and should

not be considered in repairing routes to destinations between a node requiring a new route to

the destination and the destination itself. A node can send a RREP only if its active path to

the requested destination does not contain any link traversed by the RREQ or any link specified

by the source and the relays of the RREQ as one that cannot be trusted. This dissemination

notifies nodes about invalid topology information and ensures that intermediate nodes sending

RREPs do so considering only correct topology information. Section 4.4 provides an example

of how LVR works, and compares it to DSR’s packet salvaging technique that can result in

loops. Section 4.5 analyzes the correctness of LVR.

Section 4.6 presents the results of simulations run in Qualnet for a number of scenar-

ios comparing LVR with OLSR, AODV, DSR, FLR, and AODV-PA. The results clearly indicate

that LVR performs better than the other protocols. This is due to the fact that LVR allows more

intermediate nodes to answer RREPs using paths based on valid topology information, because

RREQs and RREPs specify those links that caused prior RREQs to be issued. Additionally,

LVR uses the topology information cached at nodes to send source-routed RREQs similar to

those in OLIVE and the flow establishment packets in flow-based DSR [12] to reduce the need

for flooding RREQs. Section 4.7 presents our concluding remarks.

111

4.2 Sufficient conditions for Loop-Freedom using link vectors

4.2.1 Network and routing Model

To describe our loop-free condition, we refer to those nodes that use a given node in

their paths to a destination as “upstream nodes” of the given node.

The topology of the network is considered as a directed graph G = (V,E), where V

is the set of nodes and E is set of links connecting the nodes. Each edge e ∈ E has an associated

time-varying link cost lc. A link e ∈ E represents a directed arc (u, v), where u, v ∈ V ; node

u is called the head of link e, and node v is called the tail of link e. The sequence of links,

which we call link vector, LV = {e1, e2, ..., en} (where ei ∈ E with i ∈ {1, ..., n}) represents

a directed path from the head of link e1 to the tail of link en.

The following information is stored at node A for a destination D: (a) the successor

or next hop (sAD), (b) a link vector (LV A
D) consisting of the last known valid path from A

to D, and (c) the link coordination set (LCA
D) consisting of an unordered collection of links.

The link vector LV A
D need not be accurate at every instant of time due to topological changes

downstream. The link coordination set LCA
D contains those links that A should not be use when

choosing new paths for destination D.

An update message for destination D generated by node A consists of a link vector

LV A
D , and the link coordination set LCA

D, stored by A at that time. The most recent link vector

for destination D received from node B by node A is denoted by LV A
DB . The operator ⊕ is

used to add a new link in order to the chain of nodes in the link vector.

Node A applies the following two rules when it must change its successor for desti-

112

nation D after an input event:

• Rule 1: If node A must make node B its successor for destination D, it sets LV A
D←(A,B)⊕

LV A
DB .

• Rule 2: If node A must change its path to D because its link to its current successor sAD

fails, then node A sets LCA
D ← LCA

D ∪ (A, sAD) before it changes sAD.

4.2.2 Loop-free condition

Link Vector Condition (LVC): Node A can make node B its new successor for desti-

nation D at time t if (i) @ l | (l ∈ LCA
D(t) ∧ l ∈ LV A

DB(t)), and (ii) LCA
DB(t) ⊇ LCA

D(t). If

no such neighbor B exists, then node A must retain its current successor for D, if it has any.

The first part of the condition states that node A can pick neighbors advertising a path

that does not contain a link that should not be trusted. The second part implies that the nodes

downstream a chosen path to D do not trust sets of links that include all the links that node A

does not trust.

Theorem 18. No routing table loops can form for destination D if nodes use LVC whenever

they change their successor paths for destination D.

Proof. The proof is by contradiction. Without loss of generality, assume that the directed suc-

cessor graph for destination D, which we denote by SD(G), is loop-free at every instant before

time t. Assume that a loop LD(G) is formed at time t. It is easy to see that no loops can be

formed unless at least one node picks as its successor at time t a node that is upstream in SD(G).

113

s[k+m,old]

s[k+2, new]

a=s[1,new]

s[2,new]

s[3,new]

s[k,new]

s[k+1,old]

s[2,old]

s[3,old]

s[4,old]

b=s[1,old]

D

s[k+1,new]

s[k+2,old]

p[i]

i

Figure 4.1: LVC loop-free condition

Assume that LD(t) is formed when node i makes node a its new successor siD(t) after

processing an input event at time t, where b = siD(tb) 6= a and tb < t. We denote by Paj(t) the

path formed by the successor entries of the nodes starting from node a to node j for destination

D. Because we focus on shortest-path routing, PaD(t) must include Pai(t).

Let Pai(t) consist of the chain of nodes {a= s[1,new], s[2,new],...,s[k,new],...,i} at

time t, as shown in Figure 4.1. The notation indicates that node s[k+1, new] is the k th hop in

path Pai(t) and has node s[k+1,new] as its successor at time t.

The last time that node s[k,new] updates its routing table entry up to time t and sets

s
s[k,new]
D =s[k+1,new] is denoted by ts[k+1,new], where ts[k+1,new] ≤ t. Therefore, we have that

s
s[k,new]
D (ts[k+1,new]) = s

s[k,new]
D (t).

Because nodes joining PaD do not switch to any new successors afterwords, it is also

true that

114

LC
s[k,new]
D (ts[k+1,new]) = LC

s[k,new]
D (t) (4.1)

The time when node s[k,new] sends an update that constitutes the last update from

such a node that is processed by node s[k-1, new] up-to time t is denoted by ts[k+1,old]. Node

s[k, new]’s successor at time ts[k+1,old] is denoted by s[k+1, old]. Note that ts[k+1,old] ≤

ts[k+1,new] ≤ t, and that s[k + 1, old] need not be the same as s[k + 1, new].

Note that LC i
D(t1) ⊆ LC i

D(t2), if t2 > t1. Because LVC must be satisfied when

node s[k,new] ∈ PaD(t) makes node s[k+1,new] ∈ PaD(t) its successor at time ts[k+1,new] it

must be true that

LC
s[k,new]
Ds[k+1,new](t) = LC

s[k,new]
Ds[k+1,new](ts[k+1,new]) ⊇ LC

s[k,new]
D (ts[k+1,new])

For a loop to be formed after time t, it must be true that PaD(t) exists. Hence, given

that each node along PaD(t) must satisfy LVC when switching successors, we have that

115

LCa
D(t) = LCa

D(ts[2,new]) ⊆ LCa
Ds[2,new](t)

= LC
s[2,new]
D (ts[3,old]) ⊆ LC

s[2,new]
D (ts[3,new])

...

LC
s[k,new]
D (ts[k+1,new]) ⊆ LC

s[k,new]
Ds[k+1,new](t)

= LC
s[k+1,new]
D (ts[k+1,old]) ⊆ LC

s[k+1,new]
D (ts[k+1,new])

...

LC
p[i]
D (ti) ⊆ LC

p[i]
Di (t) = LC i

D(ts[k+m,old]) ⊆ LC i
D(ti)

... (4.2)

Accordingly, from Eqs. 4.2 and 4.1, it is true that

LCa
D(t) ⊆ LC

s[2,new]
D (t) ⊆ ... ⊆ LC

s[k,new]
D (t)

⊆ ... ⊆ LC i
D(t) ⊆ ... (4.3)

According to Rule 2, before node a switches to s[2, new] at time ts[2,new], it must be true that

(a, s[2, old]) ∈ LCa
D(ts[2,new]). Hence, (a, s[2, old])∈LC i

D(t). Similarly for every node s[k,

new] ∈Pai(t), it is true that (s[k, new], s[k+1, old]) ∈LC s[k,new]
D (t).

For a loop to be formed at time t, LVC must be satisfied for node i to switch to node

a as successor, i.e., @l | (LV i
Da(t) ∧ l ∈ LC i

D(t). Depending on the last topological update

processed by node a and received by node i, LV i
Da(t) can take different possibilities. Given that

LV i
Da(t) = LV a

D(ts[2,old]), if LV a
D(ts[2,old] reflects the accurate link vector PaD , then from Rule

2 it must be the case that (i, b)∈LC i
D(t). Therefore, LVC cannot be satisfied at node i in this

116

case. On the other hand, if LV a
D(ts[2,old]) is outdated and contains at least one of the previously

used links (i.e., (s[k, new], s[k + 1, old])) before a node s[k, new] switched to path PaD , then

LVC is not satisfied at node i; hence, no loops can be formed.

4.2.3 Illustration of loop-free condition

We illustrate how LVC can be used to ensure instantaneous loop-freedom assuming

the existence of a mechanism that coordinates the link coordination sets along a loop-free path.

Figure 4.2 shows the directed acyclic successor graph for a seven-node network with a flow

from node A to node D. The corresponding LV and LC are shown with respect to their times

(t1, t2, t3). Assume that link BC fails at time t1 < t < t2. If node X had a route to D along,

say, path P={X,Y,D}, then B can detect from LV X
D (t1) that it is a loop-free path. However,

before node B can switch to X at time t2, the second part of LVC must be satisfied along path

P . Figure 4.2(b) shows the resulting LC’s at time t2 after a mechanism was used to coordinate

the LCs along the path. The key advantage of this coordination of LCs along the successor

path P is that the update for the link failure (B,C) need not be reliably communicated to the

entire set of nodes upstream of node A and the nodes in subgraph G. If node X tries to use A

or any upstream node after time t2, LV A
D = {(AB), (BC), (CD)} is detected to be out-dated

because of LCX
D = {(BC)} (i.e., the LVC condition is violated); therefore, a loop cannot be

formed. Again, if link XY fails at a time t2 < t < t3. Then, node X can switch to the

path P ′ = (XZ), (ZY), (Y D) after the necessary link coordination, as shown at time t3 in the

figure. A new node downstream , say Y , cannot switch to node A despite the out-dated LV A
D

117

B

C

A

D

LV(t1):{(BC),(CD)}
LC(t1):{}

Graph G: Nodes using A to reach D

LV(t1): {(AB),(BC),(CD)}
LC(t1):{}

LV(t1):{(CD)}
LC(t1):{}

(a) Time t1

B

C

X

A

D

Y

Graph G: Nodes using A to reach D

LC(t2):{}
LV(t2): {(AB),(BC),(CD)}

LV(t2):{(BX),(XY),(YD)}
LC(t2):{(BC)}

LV(t2):{(CD)}
LC(t2):{}

LC(t2):{(BC)}
LV(t2):{(XY),(YD)}

LC(t2):{BC}
LV(t2):{(YD)}

(b) Time t2

B

C

X

A

D

Y

Z

LV(t3):{(XZ,ZY,YD}
LC(t3):{(BC),(XY)}

LC(t3):{(BC),(XY)}

LV(t3):{(XZ),(ZY),(YD)}
LC(t3):{(BC),(XY)}

Graph G: Nodes using A to reach D

LC(t3):{}
LV(t3):{(CD)}

LC(t3):{}
LV(t3): {(AB),(BC),(CD)}

LV(t3):{(BX),(XY),(YD)}
LC(t3):{(BC)}

LV(t3):{(YD)}

(c) Time t3

Figure 4.2: LVC Illustration

118

due to the untrusted links stored in LCY
D .

The above example illustrates that loop freedom in a routing protocol based on LVC

is achieved by requiring nodes to store in their link coordination set the set of links that should

not be used in computing new routes. Hence, the nodes upstream of node B (node A, and graph

G in the example) can be updated to the correct link vectors without affecting loop-freedom.

This is true even if the updates propagating upstream are lost or delayed.

As Theorem 18 shows, LVC is sufficient to guarantee routing-table loop-freedom.

However, a routing protocol based on LVC must consider the following issues: (i) When no

neighbors satisfying LVC can be found and physical paths to the destination exist, a mechanism

is needed to establish a new path to the destination by coordinating the untrusted links (i.e., the

LC sets of nodes); and the LC set of a node has to be ”reset” (set to empty) for either saving

memory or when nodes lose state due to reboots. We address these issues in the next section

and present an on-demand routing protocol based on LVC.

4.3 Link Vector Routing (LVR) Protocol

LVR uses route request (RREQ), route reply (RREP), and route error (RERR) mes-

sages similar to that of other on-demand routing protocols. LVR realizes the LVC condition

in an on-demand context to maintain instantaneous loop-freedom. For this purpose, RREQs

and RREPs carry the set of links that should not be trusted by any of the nodes originating or

forwarding the message. The LC in a RREQ prevents any nodes from sending a RREP unless

its stored path to the destination does not contain any link traversed by the RREQ or the LC

119

stated in the RREQ.

4.3.1 Information Stored and Exchanged

In the remainder of this paper, XA
D(t) denotes a value X that is stored at node A with

respect to destination D at time t. The time is omitted when it refers to the current time. We

use the superscripts req and rep to refer to RREQs and RREPs, e.g., X req
D denotes a parameter

X carried in a RREQ for destination D.

The routing-table entry for a destination D at a given node A specifies: (a) The suc-

cessor to D (sAD), (b) the current link vector (LV A
D), (c) the link coordination set (LCA

D), (d) the

lifetime of the entry (teAD), (e) the path cache (pathcacheAD), and (f) a flag for link-vector cache

use (useLV forCacheAD). The path cache for a destination D consists of a set of path entries,

each comprising of: (a) the link vector to an intermediate node I (LV A→I
D), (b) the estimated ttl

to the destination (estttl), and (c) the expiry time for this path (LifetimeA→I
D). The path cache

serves the purpose of collecting information from RREPs that are generated by intermediate

nodes that have a loop-free path. The estimated ttl in the path cache helps set the RREQ expiry

timer when a unicast source-routed RREQ is sent to coordinate the LC from the intermediate

node to the destination.

Node A maintains a link cache (lcacheA), that contains tuples of link entries

(head, tail, c, expirytime), with each entry consisting of the node addresses of the link head

and tail entries, the associated cost, and the link life time. The useLV forCache flag stored for

a destination route-entry is used to determine whether the specific LV is valid and can be used

to update the link cache.

120

Node A processing a RREQ for destination D identified by the unique source, request

id pair (src, rreqid) caches the aggregate LC set ALC req
D , which we denote as LCA

(src,rreqid).

This stored value is used to setup the route entry with the correct LC when the RREP is received

for this RREQ.

4.3.2 Route Search and Maintenance

Sources establish routes to destination by flooding route request (RREQ) queries.

Each RREQ for a destination (dst) carries the address of the originator (src) along with a

unique identifier (rreqid) set by this originator so that the (src, rreqid) is globally unique

for destination dst. To determine which nodes can reply to a RREQ, each RREQ carries an

aggregated link coordination set (ALC) consisting of the union of the LC’s of the source and

the nodes that relayed this RREQ. This ensures that generated RREPs can be used by the nodes

to update their routing tables.

A node is said to be active for a computation (A, IDA) for a destination if it is the

source of a RREQ identified by (src = A, rreqid = IDA). Node A becomes active for a

RREQ (A, IDA) when it has data packets to send to destination D, but has no active valid route

entry for D. A node is engaged in a RREQ computation (A, IDA) by caching the corresponding

previous hop address. The relaying node also caches the corresponding ALC from the RREQ;

we denote the cached ALC at a node B for this RREQ as LCB
(A,IDA). Otherwise, the node is

passive.

At any given time, a node can be active in at most one RREQ for the same destination.

The RREQ (A, IDA) terminates when either node A receives a feasible reply satisfying LVC

121

for destination D or the timer for its RREQ expires. A node may be engaged in multiple RREQs

for the same destination, but relays a RREQ (A, IDA) only once by caching the identifier of the

RREQ it forwards.

4.3.2.1 Finding loop-free paths using link coordination sets

The following two rules are used to manipulate the ALC of a RREQ at the source and

relaying nodes:

Change Link vector Condition (CLVC): If node A has a successor sAD = B for

destination D and must change its successor because of a link failure, then it adds LCA
D ←

LCA
D ∪ (A,B), and sets LV A

D ← φ. It issues a new RREQ carrying ALC req
D = LCA

D.

Relay Link Vector Condition (RLVC): Node A relays a RREQ for D if it has not previ-

ously processed the RREQ identified by the (src, rreqid) pair, and sets ALC req
D ← ALCreq

D ∪

LCA
D.

Carrying the untrusted link set LC in a RREQ, as in CLVC, allows the neighbor of

a source to check if LVC can be satisfied at the source in a distributed fashion. However,

RREQs usually span multiple hops; hence, as per RLVC, relay nodes must add their LC to

the aggregated ALC in the RREQ. This allows a node generating a reply to check LVC in a

distributed fashion along the entire path. For example, in Figure 4.2(c), if node B’s RREQ is

relayed by node X , then the RREQ’s ALC is set to {(BC),(XY)}, which allows node Z to check

LVC, locally, which will ensure that the generated reply will satisfy LVC at nodes X and B.

122

4.3.2.2 Minimizing floods using topology information

To limit the number of RREQs that need to be flooded, LVR uses the partial-topology

information collected from link vectors to unicast RREQs to the destination, and uses the loop-

free check of LVC to allow intermediate nodes to reply to RREQs. A RREQ contains a link

vector LV used to direct the RREQ as follows:

• Path Cache: If LV is not empty, then LV is set to the best path (based on the met-

rics considered). Nodes relaying this RREQ must unicast it to the next-hop specified in

LV . After the RREQ reaches a node having a valid active route to the destination, it is

forwarded using the successor entries towards the destination.

• Link Cache: If a path can be determined using any standard path-selection algorithm (i.e.,

Dijkstra), then LV is set to that path. Nodes relaying this RREQ source-route the RREQ

to the destination.

• Expanding-ring flooding: In this case LV is set to φ, and RREQ floods are issued

with a controlled ttl. Nodes relaying the RREQ must append the traversed link to LV ;

for example, node B on receiving a RREQ from node A for destination D must set

LV req
D ←LV req

D ⊕(A,B).

If the path stated in the LV of a RREQ is incorrect or invalid, the RREQ is dropped

at an intermediate node. To indicate that the RREQ must be unicasted, a flag bit ’S’ is set

in the RREQ. In all three cases, a corresponding RREQ expiry timer is set equal to 2 * per-

hop-latency * hop-count. The value of hop-count is derived from LV , if it is valid. When

a expanding ring-search is used, the hop-count is incremented suitably to flood an increased

123

portion of the network. If no RREPs are received for destination D after a number of attempts,

a failure is reported to the upper layer.

4.3.3 Route Establishment

4.3.3.1 Generating RREPs

Route replies are generated in response to a previously unprocessed RREQ by either

by the destination or an intermediate node that has a valid loop-free path. A RREP message

contains the destination dst for which this RREQ was issued by a source, along with the unique

identifier (src, rreqid) for this RREQ. Each RREP contains LV and LC , which are set respec-

tively to the link vector and the link coordination set for this destination at the node transmitting

the RREP. A cost metric for the route may be implicitly derived from LV or carried separately

in the RREP, i.e., hop-count. The lifetime of the route is also carried.

The destination replies for every unique RREQ flood once; however, intermediate

nodes having a valid route to a destination can only reply if the following condition is satisfied.

Intermediate nodes can issue two types of RREPs, which are distinguished using the coordinated

’Co’ bit carried in the RREP flags.

Start Link vector Condition (SLVC): Node I can issue a RREP responding to a RREQ

for destination D if I has an active route to D and @l | (l ∈ LV I
D ∧ l ∈ ALCreq

D). If

LCI
D ⊆ ALCreq

D , then node I sets CorepD = 1.

SLVC serves as a distributed check of LVC for intermediate nodes to generate replies.

The ’Co’ bit is set if the second part of LVC is satisfied, i.e., the path is loop-free and the LCs

of the nodes along the path are coordinated. The rationale behind using the ’Co’ bit is to avoid

124

coordinating all paths to the destination as only one path will be setup for the route. Also,

satisfying the first part of LVC means that the node has a loop-free path to the destination for

this route search. Hence, the source collects intermediate replies which might be un-coordinated

and saves them in the path cache. When the route fails later, the source can unicast a RREQ

from the path cache and coordinate the path without requiring to flood the network. If the ’Co’

bit is set, then the RREP also carries an additional parameter, the estimated route cost (estcost),

which is the hop-count to the destination from the node issuing the RREP. The estcost helps a

source set up a correct RREQ expiry timer when unicasting a RREQ from the path cache to an

intermediate node for coordination.

4.3.3.2 Processing RREPs

RREPs that have the coordinated bit set (Co=1) can be used by the nodes to update

their routing table entry if LVC is satisfied. Node A on receiving a RREP identified by (S, IDS)

with Co=1 from node B for destination D sets the following: sAD ← B; LV A
D←(A,B)⊕LV rep

D ;

LCA
D←LCA

D ∪ LCA
(S,IDS)

.

RREPs received without the ’Co’ bit set are added to the path cache. A node A

receiving a RREP for destination D, adds the link vector LV rep
D to pathcacheAD and sets the

esttl in the cache for this entry to estcost + cost(LV rep
D).

To illustrate an example using Figure 4.2(c): Assume node X has an active route to D

with LV X
D ={XY,YD}. If link BC fails, node B sends a RREQ to node X which applies SLVC

to see that it can generate a RREP with Co bit not set because LCX
D ={}. The RREP will carry

a estcost of 2 (for XY,YD). Node B will add this RREP to its path cache, and then coordinate

125

the path XYD to setup the LCs. On the other hand, if the LCs were already coordinated, the Co

bit can be set, and node B can use the RREP directly to update its route entry.

4.3.4 Handling Failures

When the link to next hop B for destination D is no longer used, then node A adds

the successor link entry to its link coordination set, LCA
D ← LCA

D ∪ (A,B). Routing table

maintenance and route error message handling are much the same as discussed in Chapter 3 for

FLR.

4.3.5 Resetting Link-Coordination Sets

LVR requires a safe reset mechanism for the LCs maintained at the nodes as they are

critical to detecting outdated link vectors and avoiding the formation of loops. The LC at a node

for a destination needs to be reset when (i) state is lost due to a reboot or if the routing table was

purged to save memory, (ii) a RREQ packet to be generated or relayed will exceed packet size

due to the size of the ALC , or (iii) a RREQ is relayed with a ALC that out-dates the currently

stored LV . If reliable communication among neighbors is possible, then techniques proposed

for clearing old link-state information [39] can be used. However, adhoc networks usually

operate on top of an unreliable link layer; hence, we use our framework based on destination

sequence numbers that we introduced in Chapter 2.

We give a brief description of how per-destination sequence numbers are used in LVR

as a ’reset’ mechanism. Each node stores a per-destination sequence number, and the associated

LV and LC. The base LVR protocol operation for a destination can be considered as one running

126

on the same per-destination sequence number at all the nodes, and represents a pseudo time-

frame. Whenever a node requires to reset its LC, it requests a destination sequence number

reset, as specified in our framework, by forcing the destination to answer the request. The

node then acquires a increased sequence number for the destination, effectively advancing its

pseudo time-frame. It is intuitive that nodes only learn newer sequence numbers, advancing

their pseudo time-frames. Hence, loss of information about links that should not be trusted does

not affect loop-freedom as all upstream nodes are invalidated from new routing computations

when a reset is acquired by a node. This is equivalent to maintaining different timed-instances

of untrusted links (LC) and trusted links (LV) at the nodes for a destination; however, links can

be trusted again when they have a fresher time-stamp.

4.3.6 Cache Maintenance

The lifetime of links in the cache, which is used to calculate paths for source-routing

RREQs, are refreshed by a pre-defined parameter active time period on two events: (i) a

RREQ or RREP that was processed carried the link in the traversed link vector, and (ii) a

data packet was forwarded using a route entry that has this link in its stored link vector, and

useLV forcache is true.

When a RERR carrying a failed link is received, useLV forcache is set to false for

all route entries with stored link vectors using this link, and the cache lifetime is set to expired

for this link. Also, when an source-routed RREQ fails, then the associated links in the link

vector are invalidated.

Note that the links added to the cache in LVR are always fresh as they only carry

127

the path traversed by the RREP. Even RREPs from intermediate nodes carry only the link-

vector from the source to the intermediate node. This is in contrast to DSR, where the RREPs

can carry stale paths which are created by appending old outdated paths stored at intermediate

nodes towards the destination.

As an optimization, sequence numbers associated with the head node of each link can

be used to determine the freshness of the updates. Because LCs are essentially the set of links

that have failed, the cache can be kept more accurate if LCs along with sequence numbers for a

destination are transmitted in the RERRs.

4.4 Example

To illustrate the operation of LVR, we assume that all link costs are unity, and hence

are not included in the description. For brevity, the use of sequence numbers is addressed only

for LC resets.

4.4.1 LVR operation

4.4.1.1 Setting up routes

Fig. 4.3 (a) shows the directed acyclic successor graph for destination D in a six-node

network operating LVR as the routing protocol. Nodes A and E have an active flow to D and

the corresponding link vectors (LV), and the link coordination set (LC) are as shown at time t.

This route set up results from a RREQ flood. We assume the link coordination set LC is empty

at all nodes. The generated RREP is forwarded along the reverse path, where LVC is satisfied

128

LV: {(AB),(BC),(CD)}

LV: {(CD)}LV:{(BC),(CD)}

LV: {(EF),(FD)} LV: {(FD)}

A B C D

FE

LC:{}

LC:{} LC:{}

LC:{} LC:{}

LV: {(AB),(BC),(CD)}

LV: {(EF),(FD)}

LV: {(FD)}

LV: {(CD)}LV:{(BE),(EF),(FD}

E F

CBA D

LC:{(BC)}

LC:{(BC)}
LC:{}

LC:{(BC)} LC:{}

(a) (b)

LV: {(FD)}
LV: {(AB),(BC),(CD)}

LV:{(BE),(EF),(FD} LV: {(CD)}

D

F

CB

E

A

LC:{}

LC:{(BC)}

LC:{(BC)}

LC:{}

LC: {BC,EF}
LV:{}

LV: {(AB),(BC),(CD)}

LV: {(CD)}LV:{(BE),(EF),(FD}

E F

CBA D

LC:{(BC)} ; SN:1 LC:{}; SN:1

LC:{};SN:1

LV: {(EF),(FD)}
LC:{}; SN:2

SN:2

LV: {(FD)}
SN:2LC:{};

SN:1

(c) (d)

LV: {(FD)}

LV: {(CD)}LV:{(BE),(EF),(FD}

E F

CBA D

LC:{}

LV: {(AB),(BC),(CD)}

KLC:{...}

LV: {(EF),(FD)}

LV: {(AB),(BE),
 (EF),(FD)}

 (EF),(FD)}
LV: {(KA),(AB),(BE),

LC:{...}

LC:{(BC),...}

LC:{(BC),...}

LC:{(BC),...}

(e)

Figure 4.3: LVR protocol operation

at all the nodes.

4.4.1.2 Re-establishing routes

We now illustrate how LVR coordinates the link vectors at nodes along the new suc-

cessor path after link BC fails at time t1 > t. If not performing a local repair, node B sends a

RERR to A that may or may not be received. For the purposes of this discussion, unless stated

otherwise, we assume that RERRs are never delivered. Node B adds LCB
D ← LCB

D ∪ (B,C)

to keep track of the failed links for destination D. Node B attempts to re-establish the route

129

E:{EABCD}
B:{BEFD}
A:{ABCD}

Source Routes

{CD}
[{ABCD}]

 [{BCD},

A B

E F

DC

{BEFD}]

[{FD}]

[{EFD}, {EABCD}]

Figure 4.4: Loops using DSR packet salvaging operation

by sending a RREQ with ALCreq
D = {(B,C)}. Node E can reply to the RREQ when it re-

ceives the RREQ because SLVC is satisfied: @l | l ∈ ALC req
D = (B,C) ∧ l ∈ LV E

D =

{(E,F), (F,D)}, but the successor path {E,F,D} has not been coordinated: ALC req
D 6⊆LC

E
D .

Hence, as an intermediate node, node E issues a RREP with Co = 0, estcost = 2, and

LV rep
D = {(B,E)}.

Node B cannot use the RREP it receives for updating its routing tables because

CorepD = 0, so it adds it to the pathcache pathcacheBD with estttl = 3 (from estcost +

cost(LV rep
D)). To coordinate the successor path from B to D, node B unicasts the RREQ

(B, IDB) to E with ALCreq
D ← {(B,C)}, S = 1}. When nodes E and F process the RREQ,

because the S-bit is set, they will unicast the RREQ along to F and D, respectively; both nodes

cache for (B, IDB), LC ← {(B,C)}. This RREQ essentially serves as a unicast ”probe”

message, and because it causes no network-wide flood, it saves bandwidth.

The destination D generates a RREP with CorepD = 1 when it receives the request.

When the RREP traverses the reverse path, nodes E and F can accept the RREP because it

satisfies LVC. Following update rules, node F will set LCF
D ← LCF

D∪LC
A
(B,IDB) = {(B,C)};

and, similarly, node E does the same. When node E relays the RREP with LC rep
D = {(B,C)},

130

it satisfies LVC at B, and as shown in Figure 4.3(b), the successor path {B,E, F} to destination

D is setup with the correct LC coordination.

4.4.1.3 Preventing loops and counting-to-infinity

When link EF fails at time t2 > t1. Assume that the link from node E to A was

temporarily down and comes up. Node E queries a RREQ with ALC req
D = {(B,C)}. How-

ever, node A cannot answer the RREQ because SLVC is not satisfied, i.e., (B,C) ∈ ALC req
D

∧(B,C) ∈ LV A
D . This avoids loops that could have been formed because of the stale link vector

possessed by A. Subsequently, even though the network is partitioned, no nodes can learn new

routes from upstream nodes, and hence no counting-to-infinity can occur. The network state is

shown in Figure 4.3(c).

4.4.1.4 Reseting link coordination sets

Figure 4.3(d) shows the state after a reset along path EF . Assume that at time t1, all

the nodes had learned a destination sequence number of 1 for D. Now, say node E requires to

reset its LC for one of the reasons listed in Section 4.3.5. Node E sends a RREQ requesting

a destination sequence number reset, and the RREP (for simplicity) is generated by D after

incrementing its sequence number to 2 and traverses the reverse path {E,F}. Nodes E, and F

update their respective sequence numbers to 2, and can set their LC to . Note that despite losing

their LC, no loops can form because the set of upstream nodes {A,B} have a sequence number

of one and their replies are no longer believed by E and F . The sequence numbers help prevent

count-to-infinity or loops when LC information is lost.

131

4.4.2 DSR packet salvaging

The same sequence of events discussed in Section 4.4.1 can lead to loops, if DSR with

packet salvaging is used as the routing protocol. Figure 4.4 shows the directed acyclic successor

graph for destination D, with node A and B having active flows. The source routes cached at

each of the nodes for destination D is as shown within [] and the data packets are source-routed

using the path {A,B,C,D} at A. With the subsequent link breaks of BC and EF , nodes B

and E salvage the packets along their source routes {E,F,D} and {E,A,B,C,D}, respec-

tively. The local packet salvaging mechanism ends up looping the packets along {A,B,E,A}

as shown in figure.

4.4.3 Use of topology information in LVR

4.4.3.1 Cache freshness

In the previous DSR example, note that node E can learn and use the stale route

{A,B,C,D} even if its not salvaging a packet. This problem has been analyzed [40] previ-

ously, where the authors proposed time-stamping links using epochs of sequence numbers to

determine freshness; however, it still cannot avoid stale link information being learned the first

time. On the other hand, LVR implicitly maintains cache freshness because of the untrusted

links carried in the RREQs and the coordination mechanism. For example, node E’s RREQ

will carry ALC = {(BC)} which ensures that SLVC will not be satisfied at node A to generate

a RREP. This prevents RREPs with stale routes from being issued.

To illustrate how only fresh correct links are added to the cache, we refer to Figure 4.3

132

(e), where node B initially was using the path {BCD} before it switched to {EFD} and node

A has not been notified of this link failure because the RERR was lost. Let node K query A

with a RREQ carrying ALC = {...} (the actual values are not significant for this example).

Assume SLVC is satisfied, but the path is un-coordinated, so the RREP has Co-bit unset. The

link cache is only updated with the link (K,A), as intermediate RREPs only carry the path

traversed. Note that this in contrast to DSR where the stale path {ABCD} will be appended in

the RREP. To use that path, in LVR, node K will send a unicast RREQ to A for co-ordination

along the path. This RREQ will be forwarded along the path {ABEFD}, and when the RREP

is received, only this traversed path is added to the link cache. As an indirect implication of the

coordination mechanism, only fresh links are added to the cache. This is despite the fact that

the intermediate node A had a stale route at the time it initiated a RREP. The cache may later

become stale due to mobility, but nodes never learn stale routes directly from RREPs.

4.4.3.2 Minimizing floods

Using the same network configuration in Figure 4.3 (e), assume that the active routes

to destination D are along paths {ABCD} and {EFD}. If node K sends a RREQ, it will

receive RREPs with Co-bit unset from nodes B and C , assuming that SLVC is satisfied. Node

K will store paths to B and C in its path cache for D. Then, node K will co-ordinate the best

path, say EFD. If link KE fails at a later time, node K will co-ordinate the path BCD by

looking up the path cache. If this route fails, node K checks for any paths that can be computed

using the link cache. In essence, node K makes use of all available topology information to set

up loop-free paths before resorting to flooding RREQs to the destination.

133

4.5 Analysis

For the purposes of this analysis, we use the sequence number framework discussed

in Section 4.3.5. Our proofs consider only the case when the destination sequence numbers are

equal; it is easy to see that fresh higher sequence numbers over-ride the link-vector conditions

so that older outdated sequence numbers cannot be used.

Theorem 19. In LVR, along any successor path P = {nk, ..., n1} that exists to the destination

at any point of time, it is true that LCni
n1
⊆ LC

ni−1
n1 , for i ∈ {2, k}.

Proof. For path P to exist at a given time t, it must be true that that all nodes in P have a valid

successor. According to LVC, node ni can make ni−1 it successor for destination n1 only if it

accepts a RREP rep with LC
ni−1
n1 ⊆ LCni

n1
. Hence if path P were to exist at time t, then it must

be true that every node ni (i ∈ {2, k}) must have accepted a RREP from ni−1 with it should

have satisfied LC
ni−1
n1 ⊆ LCni

n1
.

Theorem 20. Routing tables are loop-free in LVR at any instant.

Proof. Let node I initiate a RREP for destination D and let the RREP traverse the path P={n1,...,nj},

where n1 = I (maybe the destination D) and nj = A. Let the path from I to D be Q={m1, ...,mk},

where m1= D and mk = I and Q can be null if n1 = D.

For a loop to form, node A must be on the path Q and must change successors after

processing the RREP generated by I . Because RREQs and RREPs travel loop-free paths, path

P must be loop free. Therefore, node A cannot form a loop after processing I’s RREP if

n1 = D. If n1 6=D we must show that it is impossible for A to be on I’s successor graph.

134

Assume that path Q exists at time t0 and is loop free and node A changes successors

after processing I’s RREP at time t1. Node I sends its RREP along the loop-free path P to A.

Let A be some node mi, 1 < i < k. For A to accept the RREP received from n2, it must be

true that LCA
D ⊆ LCrep

D ⊆ LCI
D, and CorepD = 1. To initiate a RREP with CorepD = 1, it must

be true at node I that @l, l ∈ ALCreq
D ∧ l ∈ LV I

D when the RREP was issued. By the same

argument as in Theorem 18 and using the invariant condition of Theorem 19, it must be true that

∃l, l ∈ LCA
D ∧ l ∈ LV I

D. Hence, node A cannot accept the RREP, and no loops can be formed

in this case.

Theorem 21. In a connected component G, partitioned from destination D, all nodes must

invalidate their routing table entries for D, in the presence of link failures and node reboots.

Proof. The proof follows directly by the use of the sequence number framework [14], [15]

when state loss is incurred by nodes. On the other hand, if no state is lost, then default RERR

propagation should invalidate routes because nodes never re-learn routes from upstream nodes

as shown in Theorem 20 and there can be no cyclic propagation of RERRs.

Theorem 22. In a error-free stable connected network, LVR ensures that a node starting a

route computation (A, IDA) for a destination D establishes a successor path to the destination

in finite time.

Proof. This proof is similar to that used for previous protocols [8] (Theorem 5, pp. 61) [14]

(Theorem 5). The RREQ (A, IDA) elicits a reply with ’Co’ set (from the destination, can also

be from a source-routed RREQ that was sent), and all nodes along the path will update their LC

135

from their cached tuple for (A, IDA). This ensures that all nodes along the reverse path accept

the RREP.

4.6 Performance

We present results for LVR over varying loads and mobility. The protocols used for

comparison are four on demand protocols DSR, AODV, AODV-PA, and FLR, which reflect

the state of the art in on-demand routing, and OLSR which is a pro-active link state protocol.

Simulations are run in Qualnet[44]. The parameters are set as in [41]. No optimizations were

used for LVR, link cache expiry times were set to 2 seconds, and the maximum size of link

coordination set in control packets allowed before requiring a reset was set at 20.

4.6.1 Simulation Setup

Simulations are performed on two scenarios, (i) a 50-node network with terrain di-

mensions of 1500m x 300m, and (ii) a 100-node network with terrain dimensions of 2200m x

600m. Traffic loads are CBR sources with a data packet size of 512 bytes. Load is varied by

using 10 flows (at 4 packets per second) and 30 flows (at 4 packets per second). The MAC layer

used is 802.11 with a transmission range of 275m and throughput 2 Mbps. The simulation is

run for 900 seconds. Node velocity is set between 1 m/s and 20 m/s. We use two sets of traffic

characteristics: (i) random flows have a mean length of 100 seconds, distributed exponentially,

and (ii) fixed flows that last the entire simulation time. For the fixed flows, we only show results

for 30-flows because we did not notice any shift in trend from the one observed for the 10-flows

136

scenario with exponential flow distribution. Each combination (number of nodes, traffic flows,

scenario, routing protocol and pause time) is repeated for nine trials using different random

seeds.

4.6.2 Performance Metrics

We address four performance metrics. Delivery ratio is the ratio of the packets deliv-

ered per client/server CBR flow. Latency is the end to end delay measured for the data packets

reaching the server from the client. The network load is the total number of control packets

divided by the number of received data packets. Data hops is the number of hops traversed by

each data packet (including initiating and forwarding) divided by the total number of received

packets in the network.

4.6.3 Performance Discussion

Tables 4.1 and 4.2 summarize the results of the different metrics by averaging over

all pause times for the 50 and 100 node networks with random exponentially distributed flows.

Table 4.3 summarizes the same set of metrics for 50 and 100-node networks with fixed flow

distributions. The columns show the mean value and 95% confidence interval. All our perfor-

mance discussions focus on the average case because the confidence intervals overlap atleast

slightly in most cases. The packet delivery ratio, the end-to-end delay, and the control overhead

over various pause times for 100-node networks with 30-flows is shown for random exponential

flows in Figure 4.5, and for fixed flows in Figure 4.6. The vertical bars in the graphs indicate

the 95% confidence intervals.

137

Table 4.1: Performance average over all pause times for 50 nodes network for 10-flows and
30-flows (random)

Protocol Flows Delivery Ratio Latency (sec) Net Load Data Hops
LVR 10 0.995±0.001 0.024±0.004 0.342±0.079 2.528±0.175
FLR 10 0.994±0.002 0.019±0.003 0.256±0.060 2.500±0.171
AODV 10 0.994±0.002 0.016±0.003 0.270±0.066 2.576±0.179
AODV-PA 10 0.994±0.002 0.017±0.005 0.268±0.065 2.583±0.190
DSR 10 0.940±0.027 0.041±0.047 0.220±0.095 2.677±0.185
OLSR 10 0.887±0.040 0.012±0.001 1.937±0.220 2.456±0.175
LVR 30 0.855±0.036 0.482±0.171 1.569±0.429 2.739±0.232
FLR 30 0.820±0.051 0.491±0.180 2.005±0.722 2.717±0.268
AODV 30 0.765±0.055 1.010±0.356 4.423±1.289 2.951±0.324
AODV-PA 30 0.754±0.055 1.092±0.351 4.343±1.191 3.002±0.336
DSR 30 0.683±0.059 4.760±1.073 0.410±0.140 3.625±0.308
OLSR 30 0.798±0.034 0.883±0.311 0.713±0.069 2.478±0.161

The summarized results are indicative of LVR’s comprehensive performance over all

mobility pause times with both flow distributions. In the 10-flow scenarios, LVR and AODV

have statistically equivalent packet delivery ratios. LVR has a slightly higher control-overhead

and latency because nodes with no sequence number information about the destination have to

force RREQs to be answered by the destination [15]. However, both DSR and OLSR exhibit

poor packet delivery, which indicates that corrupted topology information due to mobility af-

fects the accuracy of the routes in both the protocols even at very light-loads. The problem with

DSR lies in the use of source-routes to deliver packets. Source-routes are invalidated due to

topology changes and data packets are forced to be dropped by intermediate nodes. This prob-

lem is aggravated by the use of an optimization to learn source-routes carried in data packets

that can be stale. OLSR’s performance suffers from the temporary loops that can exist until the

latest topology change is disseminated to all nodes in the network. The loops cause unwanted

transmission of data packets, thereby congesting the physical medium which in-turn affects the

138

Table 4.2: Performance average over all pause times for 100 nodes network for 10-flows and
30-flows (random)

Protocol Flows Delivery Ratio Latency (sec) Net Load Data Hops
LVR 10 0.988±0.004 0.099±0.109 1.326±0.352 3.712±0.301
FLR 10 0.989±0.004 0.043±0.007 0.838±0.251 3.671±0.340
AODV 10 0.988±0.004 0.036±0.009 0.897±0.236 3.744±0.293
AODV-PA 10 0.988±0.004 0.033±0.006 0.896±0.237 3.802±0.310
DSR 10 0.876±0.050 0.099±0.057 0.859±0.353 4.257±0.317
OLSR 10 0.821±0.063 0.022±0.002 11.795±1.575 3.583±0.256
LVR 30 0.724±0.035 0.906±0.160 6.557±1.078 4.204±0.311
FLR 30 0.648±0.047 0.874±0.188 8.347±1.795 4.355±0.370
AODV 30 0.608±0.051 1.455±0.385 18.298±13.069 4.751±0.434
AODV-PA 30 0.582±0.052 1.682±0.445 16.888±7.394 4.918±0.417
DSR 30 0.618±0.049 5.125±0.782 1.243±0.405 6.141±0.499
OLSR 30 0.612±0.041 3.371±0.532 5.423±0.669 4.014±0.277

dissemination of topology updates.

The results in the 30-flow scenarios show much more disparity in the average per-

formance of the protocols although most results lie in overlapping confidence intervals. The

packet delivery graphs across various mobility pause times (4.6(a), and 4.5(a)) show that LVR

has a very consistent performance across all pause times, even close to that of OLSR at very

low mobility pause time considering that OLSR performs very well in low-mobility scenarios.

The same trend is reflected in the latency characteristics of LVR, where it is even better than the

pro-active OLSR. LVR has the highest average packet delivery, and the lowest latency in the

30-flow scenarios. LVR delivers 11% more data packets than AODV, DSR, and OLSR in both

the 30-flows scenarios with 100-nodes. LVR also convincingly outperforms FLR. The control

overhead of LVR is smaller than that of AODV and AODV-PA. Although OLSR and DSR have

smaller control overhead than LVR and AODV, they cannot be directly compared. The reason is

that OLSR’s control overhead is independent of the traffic flow characteristics, and DSR floods

139

fewer RREQs because of the optimization through which it can learn source-routes carried in

data packets. A higher control overhead usually results in congesting the medium, which in

turn causes delay when transmitting data packets. The low-delay characteristics of LVR can

be attributed to its control overhead, which is smaller than the overhead incurred by AODV. In

the case of OLSR, although it incurs small control overhead, it renders higher delays than LVR

because of the looping of data packets. The higher delays in DSR are due to the buffering of

data packets while new source-routes are being found.

Table 4.3: Performance average over all pause times for 50-nodes and 100-nodes network with
30-flows (fixed)

Protocol Size Delivery Ratio Latency (sec) Net Load Data Hops
LVR 50 0.833±0.059 0.424±0.237 1.504±0.544 2.837±0.295
FLR 50 0.758±0.089 0.584±0.342 2.858±1.313 2.903±0.386
AODV 50 0.738±0.083 0.866±0.473 5.044±1.874 3.084±0.424
AODV-PA 50 0.727±0.082 0.963±0.505 4.942±1.739 3.149±0.441
DSR 50 0.581±0.081 3.422±0.813 0.430±0.156 3.809±0.406
OLSR 50 0.772±0.042 0.842±0.413 0.727±0.072 2.534±0.187
LVR 100 0.738±0.068 0.612±0.217 5.295±1.639 4.187±0.461
FLR 100 0.623±0.100 0.735±0.314 9.307±3.622 4.504±0.707
AODV 100 0.608±0.088 1.060±0.402 16.812±8.743 4.731±0.696
AODV-PA 100 0.572±0.085 1.322±0.480 16.679±6.446 4.957±0.695
DSR 100 0.476±0.099 3.865±1.150 1.208±0.453 6.177±0.733
OLSR 100 0.585±0.066 2.761±1.062 5.541±0.811 4.074±0.452

We were unable to obtain tight confidence intervals for the control overhead of AODV

in the summarized results. We believe that the reason for the excessive control overhead and

poor packet delivery (Figs. 4.6 and 4.5) in the scenarios with very high mobility are due to

flooding of RREQs that have to reach the destination to be answered, which is due to the way in

which AODV handles sequence numbers after route failures. This congests the network which

in-turn aggravates the problem because more routes get broken triggering new RREQ floods.

140

AODV with path accumulation (AODV-PA) performs about the same as AODV. This

is due to the fact that the optimization allows route entries to be setup for relay nodes, and

this will only improve performance when there are flows towards the relay nodes within the

small window of time before the routes expire. These results are in direct correlation with

the performance results shown in [16], where it was found to show improvements only in huge

networks with many flows and was proposed as an optimization in such a case. LVR collects the

same path as in the case of AODV-PA; however, it uses the topology information for its routing

decisions in-contrast to AODV-PA’s technique of learning routes to relay nodes and discarding

the path information.

The superior performance attained with LVR compared to the other on-demand rout-

ing protocols is due to the reduction of control overhead, which directly results in lower con-

tention for the medium and better packet delivery with lower latency. Tables 4.4 and 4.5 show

the average success rate of the source-routed RREQs (S-RREQ) and coordination achieved by

sending unicast probes (I-RREQ) to an intermediate node from the path cache for all pause

times in networks of 100-nodes with random and fixed-flow traffic distributions, respectively.

The results show that, on the average, ˜50% of source-routed RREQs and unicast probes for

coordination are successful in establishing routes. Also shown are the total number of accept-

able RREPs received by sources, and the fraction of RREPs that are generated by source-routed

RREQs (S-RREP) and coordination through intermediate nodes (I-RREP). On an average, S-

RREPs and I-RREPs comprise about 30-35% of total replies received in the random-flows sce-

nario, and about 40-45% in the fixed-flows scenario. Note that both S-RREPs and I-RREPs

are generated without requiring a network-wide flood to the destination. This explains LVR’s

141

low control-overhead and short latency, because most routes are established by using path-

information or by coordinating with an intermediate node across a relatively small number of

hops. The fixed-flow scenarios seem to benefit more from the cached path information, because

the set of destinations are fixed throughout the simulation, which means that more intermediate

nodes have information about the destination. Although FLR uses topology information for

routing decisions, it does not attempt to maintain the correctness of the paths, and hence opti-

mizations such as the source-routing from link caches do not render much benefit (as shown by

results in Chapter 3). By determining the correctness of the link vectors, LVR is able to use the

cache more effectively.

The data hops metric provides a measure of the accuracy of the routes used for

forwarding. The data hops metric reflects the number of hops traversed by each data packet

whether or not it is delivered. By correlating the packet delivery ratio with the data hop count, a

notion of how many packets were actually delivered to the destination can be gauged. All pro-

tocols have statistically equivalent data hops across all scenarios, which means that in protocols

delivering less packets, some of the packets are dropped at the intermediate nodes. In AODV,

packets are dropped at intermediate nodes due to falsely triggered route failures or temporary

loops with heavy congestion. Data packets in OLSR can temporarily traverse loops before being

delivered or can get dropped due to lack of routes. Stale source routes in DSR, due to mobility,

cause packets to be dropped at the intermediate nodes. The data hops of LVR indicate that

packets are forwarded more accurately to the destination.

142

Table 4.4: LVR - RREP statistics and success rate of RREQs in 100-nodes network with 30
fixed-flows

Success Rate (%) Fraction of RREPs (%)
Pause Time S-RREQ I-RREQ S-RREP I-RREP Total RREPs
0 45.96 41.87 20.67 21.57 11676.44
50 53.57 51.82 19.74 20.73 9504.50
100 52.91 47.93 18.83 23.16 9408.00
200 51.53 47.78 19.51 22.75 9587.22
300 54.17 48.24 17.85 24.75 10345.56
500 50.77 45.78 18.56 25.73 11662.56
700 56.80 51.46 17.36 26.92 10878.00
900 60.88 55.67 14.12 29.24 10405.11

Table 4.5: LVR - RREP statistics and success rate of RREQs in 100-nodes network with 30
random-flows

Success Rate (%) Fraction of RREPs (%)
Pause Time S-RREQ I-RREQ S-RREP I-RREP Total RREPs
0 44.61 41.93 13.08 21.95 11367.44
50 44.45 41.13 13.30 22.40 11819.44
100 42.29 37.66 13.03 24.17 12883.44
300 46.01 39.91 13.21 24.43 12218.00
300 49.09 44.59 12.31 24.85 11513.78
500 52.30 45.19 11.36 24.94 10049.78
700 44.48 39.62 9.77 22.09 11609.67
900 54.28 46.82 10.71 25.75 10151.00

4.7 Conclusion

We presented a new sufficient condition to achieve loop-freedom in topology-based

routing protocols by maintaining a set of links that can no longer be trusted when nodes reroute

through new paths. Applying this condition, we have presented a new on-demand routing proto-

col for ad hoc networks, the Link Vector Routing (LVR) protocol, which collects link vectors in

its control messages similar to other proposals (AODV-PA, DSR, OLIVE, and FLR); however,

LVR maintains instantaneous loop-freedom using the collected topology information regarding

the links that form part of available paths to destinations, as well as links that should not be used

143

in establishing paths to destinations. LVR does not require source routes for data packets, re-

liable message exchanges among neighbors, or data-packet filtering. Extensive simulations are

used to illustrate that LVR achieves better performance than AODV, AODV-PA, DSR, FLR, and

OLSR. Analyzing simulation results for LVR show that a sizable percentage of RREPs received

by sources are from RREQs that they source-routed or coordinated through an intermediate

node, which can be attributed to the better topology information collection and maintainence,

avoiding network-wide RREQ floods to reach the destination.

144

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−10

1
AODV AODVPA FLR LVR DSR OLSR

0 50 100 200 300 500 700 900
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
−10

0

10

20

30

40

50

60

70

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 4.5: Random (100-nodes, 30-flows, 120 pps)
145

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−10

1
AODV AODVPA FLR LVR DSR OLSR

0 50 100 200 300 500 700 900
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
0

10

20

30

40

50

60

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 4.6: Fixed (100-nodes, 30-flows, 120 pps)
146

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−10

1
AODV AODVPA FLR LVR DSR OLSR

0 50 100 200 300 500 700 900
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

8

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 4.7: Random (50-nodes, 30-flows, 120 pps)
147

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−10

1
AODV AODVPA FLR LVR DSR OLSR

0 50 100 200 300 500 700 900
0.4

0.5

0.6

0.7

0.8

0.9

1

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
0

2

4

6

8

10

12

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 4.8: Fixed (50-nodes, 30-flows, 120 pps)
148

Chapter 5

Routing using source sequence numbers

In any on-demand routing protocol, sources flood route requests to build routes to

destinations, and each new route request is identified uniquely with a source-sequenced label

(SSL) consisting of the source identifier and a locally generated sequence number. As a route

request propagates, it creates a directed acyclic graph, because nodes relay each route request

only once. In this chapter, we present the first framework for loop-free on-demand routing in ad

hoc networks that is based directly on SSLs, rather than on independent mechanisms, which has

been the way in which prior on-demand routing protocols have been designed. Our framework

supports hop-by-hop packet forwarding, maintains routing tables that are always loop-free, and

operates correctly in the presence of state loss, node failures, and unreliable message delivery.

Section 5.1 presents an approach for loop-free routing in which the destination must

answer all route requests (RREQ). Each node relaying a RREQ associates a relay-sequenced

label (RSL) with the SSL of the RREQ it forwards. The route replies (RREP) traversing the

reverse paths along the DAG built by the RREQs cause nodes to switch successors and activate

149

the route along this path. However, nodes can be associated with multiple RREQs, and the

directed graph associated with the aggregate of all such RREQs need not be acyclic. Hence, to

ensure loop-free routes to a destination, nodes use the RSLs to accept a RREP for only one SSL

and drop the other replies, which essentially activates successor entries for a destination within

a single DAG created by a RREQ SSL. This constitutes the first component of our framework.

Section 5.2 introduces the concept of a viable successor set (VSS), which is the set

of nodes that a given node can safely pick as loop-free successors for a given destination. We

use this concept to extend the approach introduced in Section 5.1 to allow intermediate nodes

to send replies to RREQs without creating loops. The basis for this approach is the use of

label sets consisting of un-ordered collections of SSLs and RSLs with which nodes can identify

viable successors towards destinations.

Section 5.3 presents an alternative approach to extending the basic approach of Sec-

tion 5.1. This approach uses the SSL and distance to a destination as a new label for the des-

tination, and uses it together with RSLs to ensure loop-free routing while allowing nodes with

valid routes to destinations to answer RREQs.

Section 5.4 shows how instantiations of our new framework perform compared to

two on-demand protocols (AODV, DSR) and a proactive link state protocol (OLSR). Results

are presented for 50 and 100-node networks with random traffic flows. Section 5.5 provides our

concluding remarks.

150

5.1 On-Demand Routing Using Source Sequence Numbers and Des-

tination Replies

We present an approach for on-demand routing based on the SSLs and RSLs carried in

RREQs, and on RREPs issued only by destinations. We call this approach DSLR (destination-

controlled, source-sequenced labeled routing).

5.1.1 Information Stored

Node A has a unique address for itself (A) and maintains a 64-bit source sequence

number IDA that is strictly increasing, even after reboots. This can be achieved by deriving

the source sequence number from a real-time hardware clock. Node A also stores a boot-strap

identifier, BIDA, which is set to the initial value of IDA when the node starts-up.

At node A, the routing-table entry for destination D consists, at a minimum, of the

successor (next-hop) sAD and the start-identifier SIDA
D, which is used for checking if a certain

neighbor can be used as a loop-free successor. SIDA
D can be set to either of these two pa-

rameters depending on the loop-free condition being used: (a) ID?A
D , which is the last known

value of IDA(t) at time t when node A last added or updated its routing entry for D, or (b)

CIDA
D, which is the last known IDA(t) that node A assigned to a route computation for D

and modified its routing table for D using this computation. Nodes can use optional metrics

for choosing successors. Possible optional entries include the route-cost (dA
D), life-time of the

route, and state of the route entry (rtAD) (which can be valid or invalid). The route entry for a

destination can be purged at any time-instant to save memory. When there is no routing-state,

151

the value of SIDA
D is set to IDA(t), where t is the time that node A first originates or relays a

RREQ for D; otherwise, it is considered to be invalid (∞).

5.1.2 Control Signaling

The basic signaling of DSLR consists of route requests (RREQ) sent by sources and

forwarded by relays, and route replies (RREP) sent only by the destinations. Nodes notify

route failures and broken links using route errors (RERR). Each RREQ is identified with a

source-sequenced label (SSL) that consists of a (source, identifier) pair, where source is the

node address originating the RREQ, and identifier is the source sequence number ID created

by that node. RREPs generated by destinations in response to RREQs must carry the SSL used

to identify the RREQ. In addition to the SSL, each RREQ and RREP must carry the relay-

sequenced label (RSL), which is locally assigned by the node relaying the RREQ or RREP, and

is only significant within the one-hop neighborhood.

Node A is said to be active in a route computation for destination D (i.e., the RREQ)

when it initiates a RREQ that is uniquely identified by the pair (A, IDA). A node relaying a

RREQ (A, IDA) originated by another node is said to be engaged in the RREQ. A node that

is not active or engaged in a route computation for destination D is said to be passive for that

destination. At any given time, a node can be the origin of at most one RREQ for the same

destination. The RREQ (A, IDA) terminates when either node A attains a viable successor for

destination D or the timer for its RREQ expires.

We define the following five rules for nodes to search for routes to destinations. RERR

handling is omitted for brevity and is identical to ones used in previous on-demand routing

152

protocols [19]. We use the notation IDA to denote the current source sequence number at node

A, and idreqA and idrepA to denote the value carried in a RREQ or RREP.

• Rule 1: Node A must increment its IDA each time it relays or originates a RREQ.

• Rule 2: If node A requires a route to destination D, it issues a RREQ identified by SSL

(A, IDA). At the originating node, the RSL and the SSL for the same destination are

identical.

• Rule 3: If node B (6= D) receives a RREQ identified by SSL (A, idreqA) from neighbor C ,

it caches the RSL (C, idreqC) for this SSL. Node B processes a RREQ identified by a SSL

only once, and forwards a RREQ to its neighbors with the SSL created by the source of

the request and its own RSL (B, IDB).

• Rule 4: When node D receives a RREQ from neighbor I that was issued by source A for

node D itself, it sends a RREP carrying the same SSL (A, idreqA) of the RREQ, and the

RSL (I, idreqI).

• Rule 5: When node I receives a RREP for destination D identified by SSL (A, idrepA)

and carrying a RSL (I, idrepI), it must drop the reply if idrepI < BIDI . Otherwise, the

RREP can be used, if it is feasible, to update its routing table. Then, if the RREP can

be relayed, node I must find the pair (B, idreqB) it cached for this (A, idrepA), and send a

RREP to neighbor B with RSL (B, idreqB) and SSL (A, idrepA).

Theorem 23. If rules 1 to 5 are followed, RREQs and RREPs do not loop in an error-free

network.

153

Proof. For a given route computation (A, IDA), a node may be passive, engaged, or active. A

node can become active in a route computation at most once, because it maintains the identifiers

it assigns to the RREQs it originates. A router can engage in a route computation only when

the corresponding RREQ identified by (A, IDA) has not been previously processed. Hence,

any RREQ can traverse only a directed acyclic graph (DAG), which may be a directed tree if no

node relays the RREQ more than once, and any path traversed by a RREQ is free of loops.

Because RREPs are forwarded along the reverse path traversed by the corresponding

RREQs, it follows that the RREPs must traverse loop-free paths.

Note that RREQs may loop if nodes lose their cached state for a computation. How-

ever, RREPs will not loop if nodes adhere to Rule 5 when processing them as shown by this

theorem.

Theorem 24. Under any condition, Rule 5 ensures thats RREPs do not loop.

Proof. For a RREP identified by SSL (I, IDI) to loop, it must be true that the cached reverse

hop entries stored at nodes for SSL (I, IDI) in a path P must form a cycle C . However, because

of Theorem 23, this is not possible unless one or more nodes on path P lost cached state and

reprocessed the RREQ (I, IDI). Assume that a node n ∈P associated a RSL (n, IDn) with

SSL (I, IDi) at time t0, and loses state and restarts operation at time t > t0. It is true that

BIDn(t)>IDn. Node n on reprocessing the RREQ after time t must have associated a new

RSL (n, ID′

n) with the RREQ (I, IDI), such that ID′

n≥BIDn(t). To show that RREPs do

not loop, we have to show that cycle C created by the cached reverse path entries of the nodes

for SSL (I, IDI) does not exist at time t. According to Rule 5, node n can only process RREPs

154

carrying a RSL (n, idn), such that idn≥BIDn(t). Hence, at time t, node n will not process a

RREP carrying the first processed RSL (n, IDn), and does not participate in the cycle created

by the reverse route entries for SSL (I, IDI). Therefore, RREPs can never loop.

5.1.3 Sufficient Conditions for Loop Freedom

Theorem 23 shows that the RREPs travel loop-free reverse paths because the RREQ

identified by a unique SSL build a tree rooted at the source. It is easy to see that no loops can

form if every node in that reverse path to the source is engaged in only one route computation

for the destination. Based on this observation, we obtain two sufficient conditions for loop-free

routing when multiple RREQs are present: The Source Sequence-number Condition (SSC),

allows nodes to only accept a single computation within a window of computations. After ac-

cepting the computation, the node drops all other route computations inside that window, and

processes only computations from a new window. The Source Sequence-number Ordered Con-

dition is a tighter version of the SSC condition that allows sequentially ordered computations

within the same window to be accepted, which in-turn renders more RREPs usable.

We use the following terminology: id(A)ADB denotes the id from RSL (A, id) in the

RREP for destination D sent by node B to node A. id(B)AD is the id from RSL (B, id) in the

RREP that A receives from or transmits to a neighbor.

5.1.4 Source Sequence-number condition

Source Sequence-number condition (SSC): Node A can change its current successor

for destination D to node B at time t, if id(A)ADB(t) ≥ SIDA
D(t), where SIDA

D(t) = ID?A
D (t).

155

Source sequence-number Relay Condition (SRC): Node A must relay a RREP re-

ceived from neighbor B to neighbor C that is engaged in this SSL RREQ computation for D,

iff node A processed the received RREP and updated its routing table entry for destination D.

We establish the following Lemmas (2 and 3) when nodes obey rules 1 to 5, and use

SSC for switching successors.

Lemma 2. SIDA
D(t1) ≤ SIDA

D(t2), where t1 < t2.

Proof. We know that SIDA
D(t1) = ID?A

D (t1). If node A never updates its routing table till time

t2, then SIDA
D(t2) = SIDA

D(t1). On the other hand if node A updates route-entry for D at time

t2, then it can only be the case that IDA
D(t2) > IDA

D(t1). Therefore SIDA
D(t2) =ID?A

D (t2)>

ID?A
D (t1). Even if there is a reboot or state loss after time t1, it is still true at time t2 ≥ t > t1,

that SIDA
D(t) = IDA(t) > ID?A

D (t1). Hence, the lemma is true.

Lemma 3. The event of reporting the value of id(B)AD at time t to neighbor B has a causal

relation (denoted by) with the event that node A uses a value of id(A)AD to update its routing

table at time t−, where t = t−+ ε, assuming that ε is the processing time for updating the route

table.

Proof. By Rule 5, node A can report a RREP at time t only if it used a RREP to update its

routing table. Hence, node A must have used the value of id(A)AD reported by a RREP at time

t−. By Rule 3, node A must have a stored value of node B’s RSL for this RREP identified by

an unique SSL. So, by Rule 5, node A reports the value of id(B)AD at time t from the cache after

updating its routing table for a time ε. Therefore, the events are causally related.

Theorem 25. If nodes use SSC to change successors, no routing table loops can form.

156

Proof. The proof is by contradiction. Assume that, before time t, the directed successor graph

for destination D, which we denote by SD(G) is loop-free at every instant, and a loop LD(G)

is formed at time t. It is easy to see that no loops can be formed unless atleast one node changes

its successor at time t to a node that is upstream of itself in SD(G).

Assume that LD(t) is formed when node i makes node a its new successor siD(t)

after processing an input event at time t, where b = siD(tb) 6= a and tb < t. Now, PaD(t) must

include Pai(t).

Let Pai(t) consist of the chain of nodes {a= s[1,new], s[2,new], ..., s[k,new],...,i} as

shown in Figure 5.1. The notation indicates that node s[k, new] is the k th hop in the path Pai(t)

at time t, and has node s[k+1,new] as its successor at time t.

The last time that node s[k,new] updates its routing table entry up to time t and sets

s
s[k,new]
D =s[k + 1, new] is denoted by ts[k+1,new], where ts[k+1,new] ≤ t. Therefore, it is true

that ss[k,new]
D (ts[k+1,new])= s

s[k,new]
D (t).

Because nodes joining PaD do not switch to any new successors afterwords, it is also true that

SID
s[k,new]
D (ts[k+1,new]) = SID

s[k,new]
D (t)

The time when node s[k,new] sends a reply that constitutes the last reply from such

a node that is processed by node s[k-1, new] up-to time t is denoted by ts[k+1,old]. Node

s[k, new]’s successor at time ts[k+1,old] is denoted by s[k+1, old]. Note that ts[k+1,old] ≤

ts[k+1,new] ≤ t, and that s[k + 1, old] need not be the same as s[k + 1, new]. It is also true

that SIDs[k,new]
D (ts[k+1,old]) ≤ SID

s[k,new]
D (ts[k+1,new]).

From Rule 5 and Lemma 3, when a node s[k, new] relays a RREP to node s[k −

157

1, new] at time ts[k+1,old] after updating its routing table at time t−
s[k+1,old], it must be true that

id(s[k, new])
s[k,new]
D (t−

s[k+1,old]) < ID
?s[k,new]
D (ts[k+1,old])

Because SSC must be satisfied when node s[k,new] ∈ PaD(t) makes node s[k+1,new]

∈ PaD(t) its successor at time ts[k+1,new], it must be true that

id(s[k, new])
s[k,new]
Ds[k+1,new](t) = id(s[k, new])

s[k,new]
Ds[k+1,new](ts[k+1,new])

≥ SID
s[k,new]
D (ts[k+1,new])

For a loop to be formed after t, it must be true that PaD(t) exists. We now derive the following

inequality along the path Pai⊂PaD at time t, if nodes satisfy SSC when switching successors.

We use Lemmas 2 and 3.

158

SIDi
D(t) = ID?i

D(t) ≤ id(i)iDa(t) = id(i)aD(ts[2,old]) id(a)aD(t
−

s[2,old]) <

ID?a
D (ts[2,old]) ≤ ID?a

D (ts[2,new]) = SIDa
D(ts[2,new]) ≤ id(a)aDs[2,new](t) =

id(a)
s[2,new]
D (ts[3,old]) ... id(s[k, new])

s[k,new]
D (t−

s[k+1,old]) <

ID
?s[k,new]
D (ts[k+1,old]) ≤ ID

?s[k,new]
D (ts[k+1,new]) =

SID
s[k,new]
D (ts[k+1,new]) ≤ id(s[k, new])

s[k+1,new]
Ds[k,new] (t) =

id(s[k, new])
s[k+1,new]
D (ts[k+1,old])

 ... id(i)iD(t−b) < ID?i
D(tb) ≤ ID?i

D(t) = SIDi
D(t)

The invariant conditions along this path lead to the erroneous conclusion that SID i
D(t) <

SIDi
D(t). Hence, no loops can be formed when SSC is applied.

5.1.5 Source Sequence-number Ordered condition

Source Sequence-number Ordered condition (SSOC): Node A can change its current

successor for destination D to node B at time t, if id(A)ADB(t) ≥ SIDA
D(t), where SIDA

D(t) =

CIDA
D(t).

The value of CIDA
D is updated as follows: When node A switches successors for

destination D using SSOC at time t+ = t+ ε, where ε is route table processing time, the value

of CIDA
D(t

+) is set to id(A)ADB(t).

Source sequence-number Ordered Relay Condition (SORC): Node A must relay a

RREP received from neighbor B to neighbor C that is engaged in this SSL RREQ computation

159

for D, iff id(A)AD(t) ≤ CIDA
D(t), where id(A)AD(t) is the id from the RSL (A, id) in the RREP

being processed.

To prove loop-freedom, we first establish the following Lemmas (4 and 5) when

nodes obey rules 1 to 5, and use SSOC for switching successors and SORC for relaying RREPs.

Lemma 4. SIDA
D(t1) ≤ SIDA

D(t2), where t1 < t2.

Proof. We know that SIDA
D(t1) = CIDA

D(t1). If node A never updates its routing table till

time t2, then SIDA
D(t2) = SIDA

D(t1). On the other hand if node A updates route-entry for

D at time t2 using SSOC, then it can only be the case that CIDA
D(t2) > CIDA

D(t1). Even if

there is a reboot or state loss after time t1, it is still true at time t2 ≥ t > t1, that SIDA
D(t) =

IDA(t) > CIDA
D(t1). Hence, the lemma is true.

Lemma 5. The event of reporting the value of id(B)AD at time t to neighbor B has a causal

relation (denoted by) with the event that node A uses a value of id(A)AD to update its routing

table at time t−, where t = t−+ ε, assuming that ε is the processing time for updating the route

table.

Proof. By Rule 5, node A can report a RREP at time t only if it used a RREP to update its

routing table. Hence, node A must have used the value of id(A)AD reported by a RREP at time

t−. By Rule 3, node A must have a stored value of node B’s RSL for this RREP identified by

an unique SSL. So, by Rule 5, node A reports the value of id(B)AD at time t from the cache after

updating its routing table for a time ε. Therefore, the events are causally related.

Theorem 26. If nodes use SSOC to change successors, no routing table loops can form.

160

i

D

b=s[1,old]
s[k+m,old]

p[i]
a=s[1,new]

s[2,old]

s[2,new]

s[3,new]s[3,old]

s[k+1,new]

s[k+2,old]

s[k+2, new]

s[k,new]
s[k+1,old]

s[4,old]

Figure 5.1: Loop in G

Proof. The proof is by contradiction. Assume that, before time t, the directed successor graph

for destination D, which we denote by SD(G) is loop-free at every instant, and a loop LD(G)

is formed at time t. It is easy to see that no loops can be formed unless atleast one node changes

its successor at time t to a node that is upstream of itself in SD(G).

Assume that LD(t) is formed when node i makes node a its new successor siD(t)

after processing an input event at time t, where b = siD(tb) 6= a and tb < t. Now, PaD(t) must

include Pai(t).

Let Pai(t) consist of the chain of nodes {a= s[1,new], s[2,new], ..., s[k,new],...,i} as

shown in Figure 4.1. The notation indicates that node s[k, new] is the k th hop in the path Pai(t)

at time t, and has node s[k+1,new] as its successor at time t.

The last time that node s[k,new] updates its routing table entry up to time t and sets

s
s[k,new]
D =s[k + 1, new] is denoted by ts[k+1,new], where ts[k+1,new] ≤ t. Therefore, it is true

that ss[k,new]
D (ts[k+1,new])= s

s[k,new]
D (t).

161

Because nodes joining PaD do not switch to any new successors afterwords, it is also true that

SID
s[k,new]
D (ts[k+1,new]) = SID

s[k,new]
D (t)

The time when node s[k,new] sends a reply that constitutes the last reply from such a

node that is processed by node s[k-1, new] up-to time t is denoted by ts[k+1,old]. Although, note

that node s[k-1,new] may relay replies sent by node s[k,new] from time ts[k+1,old] to t.

Node s[k, new]’s successor at time ts[k+1,old] is denoted by s[k+1, old]. Note that we

only know that ts[k+1,old] ≤ t and ts[k+1,new] ≤ t, and that s[k + 1, old] need not be the same

as s[k + 1, new]. It is also true that SIDs[k,new]
D (ts[k+1,old]) ≤ SID

s[k,new]
D (ts[k+1,new]).

From SORC and Lemma 5, when a node s[k, new] relays a RREP to node s[k −

1, new] at time ts[k+1,old], it must be true that

id(s[k, new])
s[k,new]
D (ts[k+1,old]) ≤ CID

s[k,new]
D (ts[k+1,old])

Because SSOC must be satisfied when node s[k,new] ∈PaD(t) makes node s[k+1,new]

∈ PaD(t) its successor at time ts[k+1,new], it must be true that

id(s[k, new])
s[k,new]
Ds[k+1,new](t) = id(s[k, new])

s[k,new]
Ds[k+1,new](ts[k+1,new])

≥ SID
s[k,new]
D (ts[k+1,new])

For a loop to be formed after t, it must be true that PaD(t) exists. We now derive the following

inequality along the path Pai⊂PaD at time t, if nodes satisfy SSOC when switching successors.

We use Lemmas 4 and 5.

162

SIDi
D(t) = CIDi

D(t) ≤ id(i)iDa(t) = id(i)aD(ts[2,old]) id(a)aD(ts[2,old]) ≤

CIDa
D(ts[2,old]) = SIDa

D(ts[2,old]) ≤ SIDa
D(ts[2,new]) ≤ id(a)aDs[2,new](t) =

id(a)
s[2,new]
D (ts[3,old]) ... id(s[k, new])

s[k,new]
D (ts[k+1,old]) <

CID
s[k,new]
D (ts[k+1,old]) = SID

s[k,new]
D (ts[k+1,old]) ≤

SID
s[k,new]
D (ts[k+1,new]) ≤ id(s[k, new])

s[k+1,new
Ds[k,new] (t) =

id(s[k, new])
s[k+1,new]
D (ts[k+1,old])

 ... id(i)iD(tb) ≤ CIDi
D(tb) = SIDi

D(tb) ≤ SIDi
D(t)

The invariant conditions along this path lead to the erroneous conclusion that SID i
D(t) <

SIDi
D(t). Hence, no loops can be formed when SSOC is applied.

5.1.6 Basic Route Maintenance

5.1.6.1 Route Establishment

Routes to destinations are established on demand when data packets destined for that

destination are received. Node A that is active for destination D buffers such data packets.

However, if node A is passive for destination D then it must become active and issue a RREQ

as per Rule 2. Node A maintains a RREQ timer that is set to (2.ttl.latency) for every destination

for which is it active, where ttl is the time-to-live of the broadcast flood and latency is the

163

estimated per-hop latency of the network. If no usable RREPs are received, node A resends

new RREQs with an increased ttl after the expiry of its timer. If node A does not receive a

RREP for destination D after a number of attempts, a failure is reported to the upper layer. The

number of hops that a RREQ can traverse is controlled externally from the RREQ by means of

the TTL field of the IP packet in which a RREQ is encapsulated, or by other means.

5.1.6.2 Updating Routing Tables

Node I sets sID ← B when it accepts a RREP from neighbor B that satisfies SSC or

SSOC. If it has an associated route metric, it updates dAD ← drepD + lcAB . Note that nodes can

chose to accept only RREPs that will result in shorter-cost paths, although it is not necessary.

5.1.7 Termination Properties

5.1.7.1 Source Sequence-number condition

Theorem 27. All nodes in a connected component G not containing destination D invalidate

their route entries for node D within a finite time.

Proof. From Theorem 23, RREPs generated by the destination cannot traverse loops. A finite

time t after node D is partitioned from nodes n ∈ G, all RREPs must have been processed

at the sources that originated the RREQs, and no more RREPs can be present in the network.

The DASG for D defined by the successor entries of nodes in G is loop-free (Theorem 25), and

in a finite time all nodes in the DASG must be notified with a route error (RERR) stating the

un-reachability of D.

164

Theorem 28. In a stable error-free connected network, a source S will establish a route to a

destination D in finite time.

Proof. From Theorem 23, RREPs generated by the destination D will travel a loop-free reverse

back path to the source S. If every node along the path updates its routing table for D and

relays the RREP, then the theorem is true. However, if a node is engaged in multiple route

computations for D, then it may not satisfy SSC, and the RREP will be dropped. However,

in such a case, if a node is engaged for ’n’ different route computations, atleast one of them

succeeds. Because along any path to the destination from the different sources, one RREP is

always relayed, atleast one source must always establish a path to the destination irrespective

of how many other route computations are on-going at the same time. Given that there are only

a finite number of sources (nodes) in the network, and they retry new RREQs upon failure,

eventually all sources must establish routes to the destination.

5.1.7.2 Source Sequence-number Ordered condition

Theorem 29. In a connected component G, not containing the destination D, all nodes will

invalidate their route entries for node D within a finite time.

Proof. From Theorem 23, RREPs generated by the destination cannot travel in loops. A finite

time t after node D is partitioned from nodes n ∈ G, and all RREPs have been processed at

the sources that originited the RREQs, no more RREPs will be present in the network. The

DASG for D defined by the successor entries of nodes in G is loop-free (Theorem 26), and

by default RERR propogation, all nodes in the DASG will be notified with a RERR stating the

unreachability of D.

165

Theorem 30. In a stable error-free connected network, a source will establish a route to a

destination in finite time.

Proof. From Theorem 23, RREPs generated by the destination D will travel a loop-free reverse

back to the source S. For a RREP not to traverse the reverse path, one of the nodes along

the path must not relay it because SORC is not satisfied. Inorder for that to be true at a node

ni, it must receive a RREP with RSL (ni, id) such that id > CIDni

D . However, such a case

will satisfy SSOC, and node ni must use this RREP to update its routing table, and, in-turn

SORC will automatically be satisfied. This shows that the RREPs will either cause nodes to

update their routing tables and relay them or they will be relayed because SORC is satisfied.

Therefore, the RREPs traversing the reverse path will always reach the source, and all nodes

along the path will have a valid route to the destination.

5.1.8 Non-caching Option

Caching of the RSL associated with a RREQs SSL can be avoided at the relay nodes

if the RREQs and RREPs themselves carry the entire list of RSLs generated at every relay node.

This is beneficial when nodes have limited storage capacity. The message structure of such a

RREQ or RREP would be a tuple {SSL,RSL1, RSL2, ..., RSLn}, where SSL is assigned by

the originating node, and each RSLi, where i ∈ {1, ..., n}, is appended by the relaying node

ni and is carried as a list, rather than being cached at the intermediate nodes along the path. It

is also possible for mixed-mode operation where some set of nodes can operate with the cache,

while the ones that cannot can force the previous hop RSL to be carried in the message. For

example, node ni can flag a bit indicating that RSLni−1 , along with its new RSLni
must be

166

SSL:(A,1)

SSL:(C,2)
RSL:(A,2)

RSL:(C,2)
SSL:(C,2)

P1

P2

A

B

C

D

RSL:(A,1)

P1

P2

SSL:(A,1)

A

B

C

D

RSL:(A,1)

SSL:(A,1)
RSL:(A,1)

SSL:(A,1)

SSL:(A,1)
RSL:(C,1)

RSL:(B,1)

SSL:(A,1)
RSL:(C,1)

SSL:(A,1)

RREP
RREQ

RSL:(B,1)

A

C

B

D

RSL:(A,1) RSL:(A,2) RSL:(A,2)RSL:(A,1)RSL:(A,1)

Drops

SSL:(A,1) SSL:(A,1) SSL:(C,2) SSL:(A,1) SSL:(C,2)

Accepts

Window of RREQ computations at node A for destination D

(a) (b) (c)

Figure 5.2: Using SSLs and RSLs with SSC

carried in the RREQ. This ensures that enough information is present in the RREP generated so

that node ni can process and relay the RREP to node ni−1.

5.1.9 Example with SSC

Figure 5.2(a) shows the sequence of events in a four-node network when node A

initiates a RREQ for destination D identified by SSL (A,1) along with a RSL (A,1) (that is the

same as the SSL at the origin). Node B caches the RSL (A,1) for the SSL (A,1) and sends the

RREQ with its RSL (B,1). Similarly, node C caches the RSL (B,1) and sends out a RREQ with

RSL (C,1). Destination D generates a RREP which is processed by nodes B and C . Assuming

that the network has just begun operation, when the nodes A, B, and C transmitted the RREQ

they must set themselves a value of one for SIDA
D, SIDB

D, and SIDC
D, respectively. Node

167

C can accept the RREP (A,1) with a RSL (C,1) because SSC is satisfied and will switch its

successor to node D. Similarly, node B will switch successors to C . Nodes B and C will

set their respective SIDB
D and SIDC

D to two after updating their routing tables for D. Now,

assume that the RREP relayed by node B is queued at the MAC layer at time t1. Figure 5.2(b)

shows the sequence of events after time t1, when node C can no longer reach D due to a link

failure. Node C sends a new RREQ that traverses the paths P1 and P2 through node A to reach

destination D. The RREQ is identified by SSL (C,2) and node A relays it with a RSL (A,2).

Note that node A still has a stored value of one for SIDA
D.

Figure 5.2(c) shows the state of the network at a time t2 > t1 when a RREP is issued

by the destination identified by (C, 2) and the nodes along path P1 and P2 update their routing

tables to establish a route to node D. Node A sets SIDA
D ← 3 to establish its successor path

along P2 after updating its routing table. When the RREP identified by SSL (A,1) queued at

node B is finally transmitted and received by node A, it can form a loop if node A decides

to switch successors to B. However, because SSC must be satisfied, node A can only accept

RREPs carrying a RSL starting from (A,3) as SIDA
D = 3. Therefore, the RREP will be dropped

and no loops are formed.

Figure 5.2 also shows the window of RREQ computations that node A is engaged

or active for destination D. Node A becomes a part of two different DAGs created by the

RREQs. However, the directed graph formed by the aggregate of RREQs with SSL (A,1) and

(C,2) is not acyclic. Inside this computation window, node A becomes only a part of the DAG

created by RREQ SSL (C,2), and drops the SSL (A,1). The window can consist of more RREQ

computations, but only one of them is used, and the rest of the computations in the current

168

RSL:(A,1)
SSL:(C,1)

 A B C D

E

F
RSL:(F,1)
SSL:(C,1)

SSL:(C,1)
RSL:(C,1)

SSL:(C,1)
RSL:(E,1)

RSL:(A,1)
SSL:(C,1)

RREP
RREQ

Window of RREQ computations at
at node A for destination D

SSL:(A,2)
RSL:(A,2)

SSL:(A,2)
RSL:(C,1)

SSL:(A,2)
RSL:(B,1)

A B

F

C D

E

RSL:(F,1)
SSL:(C,1)

RSL:(A,1) RSL:(A,2)
SSL:(C,1) SSL:(A,2)

Accepts

RSL:(A,1)

SSL:(C,1)
RSL:(E,1)

SSL:(C,1)

A B

F

C D

E

Relays SSL:(C,1)

SSL:(C,1)
RSL:(C,1)

(a)

(b)

(c)

RSL:(A,1)

Figure 5.3: Using SSLs and RSLs with SSOC

window are dropped.

5.1.10 Example using SSOC

Figure 5.3(a) shows the sequence of events in a six-node network when node C initi-

ates a RREQ for node D. We assume that node D does not receive the RREQ broadcast from

C due to a transmission error. The RREQ identified by SSL (C,1) is forwarded by nodes E and

F to node D with their respective RSLs (E,1) and (F,1).

On receiving the RREQ, destination D generates a RREP identified by SSL (C,1) with

169

a RSL (F,1). Node F can accept the RREP because SSOC will be satisfied. Assume that at the

same time, node A requires a route for destination D and sends a RREQ identified by SSL (A,2)

that traverses the path BCD. Similar to previous RREQ traversals, nodes B and C forward with

their respective RSLs (B,1) and (C,2) which are cached at the receiving nodes. Figure 5.3(b)

shows these sequence of events, and also the network state when the RREP generated for this

RREQ identified by SSL (A,2) establishes the routing path along ABCD because SSOC is

satisfied at each of the nodes.

Figure 5.3(c) shows the events when node F transmits the RREP for the RREQ com-

putation (C, 1). When node A receives the computation, it cannot accept it to update its routing

table, but as per the relay condition (SORC), but still relays it to node E which accepts the

RREP and sets up its routing path to D. Note that, if SSC is used, the RREP would have been

dropped at node A. This prevents nodes from establishing routes on every route computation

that they are engaged or active for. After the RREQ timer expiry, node E or any other node has

to subsequently attempt another RREQ flood and establish a route along path ABCD or AFD.

5.2 On-Demand Routing Using Source Sequence Numbers and Replies

from Nodes with Valid Routes

We extend the basic framework of the previous section by deriving labels out of the

SSL and RSLs carried in RREPs. These labels are then used to identify neighbors as viable

loop-free successors to the destination, which allows intermediate nodes to generate replies.

We call this approach Source-sequenced Labeled Routing (SLR).

170

For the purposes of discussing SLR, we use the non-caching version of routing based

on SSLs presented in Section 5.1.8. We later show how it can simplified to the caching version.

5.2.1 Viable Successor Sets

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

1

1

1

1

1

1

1
Z

Y

B

C

D

X

A

P

Q

R

1

1

1

2

L:(C,1)

 (X,1)]
 (Y,1),LS:[(A,1),

L: (Z,1)

L:(Y,1)

L:(X,1)
LS:[(A,1)]

L:(B,1)
LS:[(A,1)]

LS:[(A,1),
 (B,1)]

 (X,1)]LS:[(A,1), Y

X

A

B

C

D

Z
R

Q

P

L:(A,1)

(a) AODV (b) SLR using SSLs and RSLs

C

B

A

X

Y

Z

D

R

Q

P

 (X,1)]
LS:[(A,1), (Y,1),

L: (Z,1)

L:(Y,1)
LS:[(A,1), (X,1)]

L:(X,1)
LS:[(A,1)]

LS:[(A,2)]
L:(P,1)

LS:[(A,2),
 (P,1)]
L:(Q,1)

LS:[(A,2),
 (Q,1), (P,1)]
L:(R,1)

LS:[(A,1),
 (B,1)]

LS:[(A,1)]
L:(B,1)

L:(C,1)

L:(A,1)

(c) SLR after reset

Figure 5.4: Viable Successor Set Dynamics

We consider the generalized class of on-demand hop-by-hop ad hoc routing protocols

that use a RREQ flood identified by an unique SSL to build a tree rooted at the source, and

label one or more of the reverse paths traversed by RREPs along the tree. We define a viable

171

successor set for a destination D at a node A at time t, denoted by V SSA
D(t), as the set of nodes

that node A can use as a successor to destination D without causing any loops. We illustrate

how VSS varies as a function of time when using a labeling scheme such as AODV.

Figure 5.4(a) shows a possible assignment of destination sequence numbers (as labels)

when AODV is used as the routing protocol for a ten-node network, after node A attempts a

route discovery for destination D and establishes a route at time t. Node A uses B as its next

hop for destination D because it offers the shortest cost path. If at a later time t1, link AB fails,

then node A increases its destination-sequence number to two. Any new RREQs from node A

can only be answered by a node that stores a destination-sequence number greater than or equal

to two. Because of the labeling adopted by the nodes, V SSA
D becomes empty (∅) at time t1

as none of the nodes in the shaded rectangle can satisfy the condition for generating a RREP.

Consequently, RREQs from node A have to be answered by the destination.

5.2.2 Labeling with Source Sequence Numbers

To allow nodes with active routes to destination D to answer RREQs in SLR, each

node stores a label set for the destination, which is an un-ordered collection of source-sequenced

labels and relay-sequenced labels, together with its self source-sequenced label for the destina-

tion. The self source-sequenced label and label set for destination D maintained at node A are

denoted by LA
D and LSA

D, respectively. The label set serves the purpose of other nodes identify-

ing node A as a viable successor towards destination, while the the stored self sequenced-label

is used by A to identify other nodes as safe viable successors. When routing state is lost, it is

considered that LSA
D = ∅ and LA

D = (A,∞). Nodes can also choose to drop any of the elements

172

from their label sets for a destination at any time without affecting correct operation. We use

the term sequenced-label (SL) to refer to a SSL or RSL.

We define the following operator (�) to determine if a sequenced-label SL1 = (src1, id1)

is fresher than another SL2 = (src2, id2) as follows:

SL1 � SL2, if src1 = src2 ∧ id1 ≥ id2

Labeling Rule: Let node ni receive a RREP satisfying SSC for destination nk car-

rying a list of SLs [(n1, id1), (n2, id2), ..., (ni−1, idi−1), (ni, idi), ..., (nk−1, idk−1)], where

(n1, id1) is the SSL and the other sequenced-labels are RSLs appended by relaying nodes.

Node ni performs the following steps:

• Node ni must set LSni
nk
=LSni

nk
- SL, if ∃SL′, such that SL′ ∈ RREP ∧ SL′ � SL.

• Node ni can assign itself a label set LSni
nk
⊆LSni

nk
∪ {(n1, id1), (n2, id2), ..., (ni−1, idi−1)}.

• Node ni can set Lni
nk

= (ni, idi). However, if node ni relays the RREP, it must set Lni
nk

=

(ni, idi) or to (ni,∞).

We denote the individual elements of the label L with srcL and idL. RREPs carry a

label set (LS) which is set to LSA
D, where node A is transmitting the RREP for a destination D.

The label set stored at node A for destination D reported by a neighbor B is denoted by LSA
DB ,

and ID(LSI)
A
DB is used to represent the idI of the SL (I, idI) reported in the label set.

Source-Sequenced Labeling Condition (SSLC): Node A can switch successors to its

neighbor B for destination D at time t, if it is true that ∃ L, such that L ∈ LSA
DB(t) and

L � LA
D(t) (i.e., ID(LSA)

A
DB(t) ≥ idL

A
D(t)).

173

We establish the following lemmas (6, 7, and 8) for the labels stored at a node A

when SSC is used for RREP processing, and Rules 1 to 5 and the labeling rule are adhered to.

We assume in Lemma 7 and 8 that there exists a node I in the network that is active or engaged

in the route computation that node A is also engaged for.

Lemma 6. idL
A
D(t1) ≤ idL

A
D(t2), where t1 < t2.

Proof. Node A must change its label LA
D for destination D only if it processes and relays a

RREP. To accept a RREP at time t as per SSC, it must be true that the RREP carries a SL

(A, idA) such that SIDA
D(t) ≤ idA. Node A will re-label LA

D = (A, idA), and can only accept

RREPs carrying a SL (A, id), where id > SIDA
D(t), for SSC to be satisfied. This is true even

after reboots or state loss from Lemma 2. Hence, the value of idLA
D is strictly non-decreasing

with time, and the lemma is true.

Lemma 7. ID(LSi)
A
D(t1) ≤ ID(LSi)

A
D(t2), where t1 < t2.

Proof. For (I, idI) ∈ LSA
D, it must be true that node A engaged in a route computation for

which node I is active or engaged as well. The proof is by contradiction. Let (I, id1
I) and

(I, id2I) be two SLs such that id1I < id2I , and (I, id2I) ∈ LSA
D. We will now prove that node

A cannot accept a RREP carrying a SL (I, id1I) and modify LSA
D. Node A must have two SLs

(A, id1A) and (A, id2A) engaged in a route computation along with node I’s SLs to receive the

RREPs; although the relation between id2A and id1A is not known. After accepting the RREP

carrying a SL (I, id2I), node A must have set SIDA
D > max(id1A, id

2
A). This is true even after

reboots or state loss because of Lemma 2. When node A receives the RREP carrying a SL

(I, id1I), it cannot satisfy SSC. Hence, node A will not modify its label set LSA
D. Therefore, the

174

lemma is true.

Lemma 8. A correspondence (denoted by) exists between the value of ID(LSI)
A
D reported

at time t and the value of idL
A
D at time t− < t, where t− denotes the time when ID(LSI)

A
D was

added to or modified in the label set LSA
D.

Proof. For ID(LSI)
A
D to be reported at time t, it must have been added to the label set at a

time earlier than t when node A must have accepted a RREP satisfying SSC. Lemma 7 shows

that the value of ID(LSI)
A
D does not decrease with time, and hence t− must be the last time

instant when ID(LSI)
A
D was modified or added to LSA

D. As per labeling rules, there must exist

a defined value for idLA
D at time t−, although it can be modified at a later time. Hence, the value

of ID(LSI)
A
D reported at time t corresponds to idL

A
D at time t−.

Theorem 31. If nodes follow labeling rules and use SSLC to change successors, then no

routing-table loops can be formed.

Proof. Using the same argument as in Theorem 25, we derive the following inequalities along

path Pai ⊆ PaD when nodes follow labeling rules and use SSLC to switch successors. We use

Lemmas 8 and 6.

175

idL
i
D(t) ≤ ID(LSi)

i
Da(t) = ID(LSi)

a
D(ts[2,old]) idL

a
D(t−

s[2,old]) ≤

idL
a
D (ts[2,old]) ≤ idL

a
D(ts[2,new]) ≤ ID(LSa)

a
Ds[2,new](t)

= ID(LSa)
s[2,new]
D (ts[3,old]) ... idL

s[k,new]
D (t−

s[k+1,old]) ≤

idL
s[k,new]
D (ts[k+1,old]) ≤ idL

s[k,new])
D (ts[k+1,new]) ≤

ID(LSs[k,new])
s[k+1,new]
Ds[k,new] (t) = ID(LSs[k,new])

s[k+1,new]
D (ts[k+1,old])

... idL
p[i]
D (t−

s[k+m,old]) ≤ idL
p[i]
D (ts[k+m,old]) ≤ idL

p[i]
D (ti) ≤

ID(LSp[i])
p[i]
Di (t) = ID(LSp[i])

i
D(tb) idLi

D (t−b)id
Li

D (tb) ≤ idLi

D (t)

This leads to the erroneous conclusion that idLi
D(t) < idL

i
D(t). Hence, no loops can

be formed.

5.2.3 Simplified Labeling

The disadvantage with SLR is that it requires maintaining huge label sets to identify

viable successors. We simplify SLR’s labeling scheme by making use of only the SSL of a

RREP, and call it the Labeled Successor Protocol (LSR).

LSR can be derived from SLR using a subset of the original labeling rules as follows:

When node A accepts a RREP satisfying SSC identified by SSL (S, IDS) for destination D, it

performs the following steps:

• Node A must set LSA
D={(S, IDS)}.

176

• Node A can set LA
D to (S, IDS), if S = A. If the RREP is relayed, then node A must set

LA
D = (A,∞).

The two stored labels used can be replaced with one in the case of LSR because it can

be seen clearly that only one of the two labels are useful for loop-free checks.

5.2.4 Example

Figure 5.4(d) shows an example of VSS dynamics using SLs. Source A starts a RREQ

flood with SSL (A, 1), which gets relayed along paths XY Z and BC after the nodes forward

it with their respective RSLs. The RREPs generated by the destination (for the purposes of this

example, we assume the destination replies to all received requests) are processed and the nodes

set their label sets LS as shown in the figure. There is no explicit ordering of nodes here, and

despite the higher hop count of X , node A can still switch to X as a viable successor applying

SSLC. Here, the V SSA
D(t) = {X,Y,Z,B,C}. Note that, in-addition to node A, other nodes

can also identify their respective viable successors for the destination. Assume that at time t1,

node A labels path PQR as viable successors as shown in Figure 5.4(e). Because node A does

not relay the RREP, it can still retain its old LA
D = (A,1). Despite switching to a new path,

node A can still use all the old successors at a later time and the V SSA
D(t1) is the complete set

{B,C,X,Y,Z,P,Q,R}. Node A is able to determine all the nodes that were previously labeled

as viable successors. However, as per the labeling rules, if node A had relayed the reply, it has

to relabel LA
D to (A, 2), which will force A to lose viable successors from its old RREQ (A, 1).

The other reason the VSS can lose successors at a later time is if the relay nodes along the path

drop SLs from their label set.

177

Figure 5.5(a) shows another example of the labeling for a network where source A

has a route to destination D. At a later time, due to network mobility, node C’s link to D

fails. Node C re-establishes a route to D through a path CEAFD, where E and F are new

nodes that are in this vicinity due to mobility. Figure 5.5(b) shows the labeling at this time.

Subsequently, if node B’s link to C fails, then node B establishes a new route through BAFD.

Figure 5.5(c) shows the labeling at this time. Note that the re-labeling occurs in these cases

because the RREP is generated by the destination. Note that in both these cases, the destination

is the only node answering because node C or B cannot identify any viable successors. The

label sets stored allow nodes to be identified as loop-free successors for a destination when

SSLC is used. Figure 5.6 shows the labeling for the same set of events when LSR (using the

simplified labeling scheme of SLR) is used as the routing protocol.

L:(A,1)
LS:[]

L:(B,1)
LS:[(A,1)]

L:(C,1)
LS:[(A,1),

 (B,1)]

A

C

D

B

 (E,1),
 (C,2)]

L:(E,1)

LS:[(C,2)]

L:(B,1)
LS:[(A,1)]

L:(F,1)

LS:[(A,2),
L:(C,1)
LS:[(A,1),

 (B,1)]

L:(E,1)
LS:[(E,1),(C,2)]

L:(A,2)

E B

A

C

D

F

LS:[(C,2)] (E,1),L:(C,1)
LS:[(A,1),

 (B,1)]

L:(A,3)
LS:[(E,1),(C,2),(B,2)]

L:(B,2)
L:(F,2)

 (C,2),(B,2)]

B

A

C

D

FE

LS:[(A,3),
LS:[]

(a) (b) (c)

Figure 5.5: SLR labeling

178

A

B

C

D

L:(A,1)
LS:[]

LS:[(A,1)]

LS:[(A,1)]
L:(C,

L:(B,

8
8

)

)

A

C

D

B FE

LS:[(C,2)]
LS:[(A,1)]

L:(F,

L:(A,

)

L:(C,)

)

L:(E,) 8

8
8

8

LS:[(C,2)]

LS:[(C,2)]

LS:[(A,1)]

A

C

D

B FE

LS:[(C,2)]
LS:[(A,1)]

L:(F,

L:(A,

)

L:(C,)

)

L:(E,) 8

8
8

8

LS:[(B,2)]

LS:[(B,2)]

L:(B,2)L:(B, 8)
LS:[(B,2)]

(a) (b) (c)

Figure 5.6: LSR labeling

5.2.5 Route Search

We present three conditions for SLR that are used by nodes to search for loop-free

viable successors across a single-hop or multiple-hops to find a route to the destination.

We redefine the is-a-subset-of or equal-sets operation (⊆) between two label sets LS1

and LS2 as follows:

LS1 ⊆ LS2, if ∀ SL, SL ∈ LS1, it is true that

∃SL′, such that SL′ ∈ LS2 ∧ SL′ � SL

Each RREQ carries a common label set CLS that represents the collection of self SLs

of each node that transmitted the RREQ. The purpose of the CLS is to find a loop-free path

from a successor whose RREP is usable at every node along the reverse path to the originating

node. We use superscripts req and rep to represent the values carried in RREQs and RREPs,

respectively. The conditions for initiating RREQs, relaying RREQs, and generating RREPs are

as follows:

179

RLSC: (Reset Labeled Successor Condition). If node A must change sAD (after a route failure

or if sAD = φ), then it must send a RREQ carrying CLSreq
D = LA

D.

GLSC: (Generate Labeled Successor Condition). Node I can issue a RREP responding to a

RREQ req for destination D if I has an active route to D, and CLS req
D ⊆ LSI

D.

CLSC: (Common Labeled Successor Condition). When node A relays a RREQ for destina-

tion D, it sets CLSreq
D =CLSreq

D ∪L
A
D in the relayed RREQ iff CLSreq

D ⊆ LSA
D. Otherwise,

CLSreq
D is set to ∅.

We illustrate an example of how the RREQ search progresses across multiple hops

to find an intermediate node that can reply. Assume all nodes in Figure 5.4(e) except node R

have expired their route for destination D. Node A sends a RREQ with CLS req
D = (A, 1). For

simplicity we consider path PQR. Node P relays the RREQ with CLS req
D = [(A, 1), (P, 1)]

as per CLSC because (A, 1) ⊆ LSP
D. Similarly, node Q relays the RREQ with CLSreq

D =

[(A, 1), (P, 1), (Q, 1)]. Now, GLSC allows node R to initiate a RREP that will satisfy SSLC at

every one of the nodes Q, P, and A when the RREP traverses the reverse path.

When the simplified labeling scheme of SLR is used in LSR, nodes can only iden-

tify neighbors as successors. Route searches progressing more than a single-hop can only be

answered by the destination.

5.2.6 Termination Properties

The proof that all nodes will invalidate their routing entries for a destination that is

partitioned follows directly from Theorem 27 which shows that the property holds when the

180

destination is the only node that can generate replies. In SLR, according to Theorem 31, the

DASG is instantaneously loop-free and no nodes ever choose any nodes upstream in the DASG.

This means that the RERRs that propagate along the DASG will force all nodes to invalidate

their route entries for the partitioned destination.

Theorem 32. In an error-free stable connected network, a source will establish a route to a

destination in finite time.

Proof. Let source A issue a RREQ for destination n1 that traverses a path P = {nk,nk−1,...,ni}

(where ni can be n1), before reaching the destination n1 or a node that satisfies SLSC. If

CLSreq
n1 = ∅, then the RREQ can only be answered by the destination, and the proof follows

that of Theorem 27. Otherwise, when the RREP is transmitted along the reverse path to node

ni−1 by node ni, it is true that LSrep
D = LSni

D⊇CLSreq
D because of GLSC and CLSC. Hence,

node ni−1 must be able to accept the RREP, which will satisfy SSLC. The same argument holds

at every node that relays the RREP along the reverse path to source A. If a node along path

P modifies its label set by processing another route computation, then the RREP will not be

accepted and will not be relayed to the source. However, sources retry RREQs and there are

only a finite number of nodes in the network. From the same argument as in Theorem 28, each

source must be able to establish a route to the destination.

181

5.3 On-Demand Routing Using SSLs and Distance Information to

Allow Replies from Nodes with Valid Routes

As the last component of our loop-free routing framework based on SSLs and RSLs,

we present an approach with which nodes with valid routes to a destination are allowed to

answer RREQs using SSLs and distance information rather than label sets, which may become

large in some scenarios. In this alternative approach to SLR, which we call Labeled Source-

sequenced Routing with Distances (LSR-D), distances are paired with SSLs to create a single

label that we call source-sequenced distance label (SSDL). SSDL’s create a relative ordering

of the distances along the path in which nodes are engaged for a particular RREQ SSL, and

the source of the SSL can identify all nodes in the path as viable successors regardless of the

distances. We show that SSDLs can be safely used to maintain loop-freedom using an technique

similar to the one presented for the prior approaches.

5.3.1 Sufficient Conditions for Loop-freedom

Each source-sequenced distance label (SSDL) is a tuple [(SSL), distance]. We now

present the associated terminology, and operations on these labels. The freshness operator (�)

and its inverse(≺), between two labels, SSDL1 =[(src1, id1), d1], and SSDL2 =[(src2, id2), d2]

is defined as follows:

SSDL1 � SSDL2

if (src1 = src2 ∧ id1 > id2) ∨ (src1 = src2 ∧ id1 = id2 ∧ d1 < d2) (5.1)

182

SSDL1 ≺ SSDL2

if (src1 = src2 ∧ id1 < id2) ∨ (src1 = src2 ∧ id1 = id2 ∧ d1 > d2) (5.2)

We denote the label stored for a known destination D at node A by SSDLA
D. An

invalid SSDL at a node A is considered to be [(A, ∞), 0]. The SSDL reported to node A

by neighbor B for destination D is denoted by SSDLA
DB . Each RREP carries the SSDL and

distance metric (d) at the relaying node for the destination denoted by drepD . We denote the cost

of the link from node A to B with lcAB .

Distance Labeling Rule (DLR): When node A accepts a RREP from neighbor B

for destination D that satisfies SSC and that is identified by SSL (S, IDS), node A must set

SSDLA
D=[(S, IDS), d

′], where if S=A then d′ =∞ else d′ = drepD + lcAB . Node A can choose

not to modify a valid SSDLA
D if it does not relay the RREP.

DLR allows nodes to assign or modify (reset) the stored SSDL for a destination. This

may be done after the loss of state, or if the SSDL stored can no longer be used to determine

any viable successors. Note that DLR requires SSC to be satisfied; therefore, nodes must still

use the RSLs to determine which RREPs to accept and such RREPs must be generated by the

destination. However, if nodes have valid SSDLs, they can choose a neighbor as a safe loop-

free successor by comparing the freshness of the SSDLs as given by this sufficient condition for

loop-freedom.

Source-Sequenced Distance Labeling Condition (SSDLC): Node A can switch suc-

cessors to its neighbor B for destination D at time t, if it is true that SSDLA
DB(t)� SSDLA

D(t).

183

Figure 5.7 shows the VSS for the same scenario discussed in Section 5.2.4 when

SSDLs are used for labeling. We assume link costs to be unity. As the figure illustrates, a relay

node B with SSDL [(A,1),2] can identify C with SSDL [(A,1),1] as a viable successor without

using extensive label sets. Node A can still identify all nodes as viable successors, because its

SSDL is set to the highest distance (∞). SSDLs also allow nodes to identify viable successors

along different paths; for example, B can identify Y and Z .

We establish the following lemma for the SSDLC stored at a node A when SSDLC is

used for RREP processing, and Rules 1 to 5 and DLR are adhered to.

Lemma 9. SSDLA
D(t1) � SSDLA

D(t2), where t1<t2.

Proof. This proof directly follows from Lemma 7 because node A derives (i.e., relabels) its

SSDL, according to DLR, by associating the SSL of the RREP it accepts with the distance to

the destination D.

Theorem 33. If nodes follow DLR and use SSDLC to change successors, then no routing table

loops can form.

Proof. Using the same argument as in Theorem 25, we derive the following inequalities along

path Pai⊆PaD when nodes follow DLR and use SSDLC to switch successors. We use Lemma

184

9.

SSDLi
D(t) ≺ SSDLi

Da(t) = SSDLa
D(ts[2,old]) � SSDLa

D(ts[2,new])

≺ SSDLa
Ds[2,new](t) = SSDL

s[2,new]
D (ts[3,old])...SSDL

s[k,new]
D (ts[k+1,old]) �

SSDL
s[k,new]
D (ts[k+1,new]) ≺ SSDL

s[k+1,new]
Ds[k,new] (t) = SSDL

s[k+1,new]
D (ts[k+1,old])

...SSDL
p[i]
D (ts[k+m,old]) � SSDL

p[i]
D (ti) ≺ SSDL

p[i]
Di (t) = SSDLi

D(tb) � SSDLi
D(t)

This leads to the erroneous conclusion that SSDLi
D(t) ≺ SSDLi

D(t). Hence, no

loops can be formed.

5.3.2 Route Search

Each RREQ carries the freshest of the SSDL’s stored at the nodes along the path tra-

versed by the RREQ, which is denoted by FSSDL. We define an in-order operator (u) between

two SSDLs, SSDL1 and SSDL2, as follows:

u (SSDL1, SSDL2) =























SSDL2, if (SSDL2 � SSDL1)

φ, otherwise

We briefly describe conditions similar to that of SLR for nodes to search for routes

across one or more hops and when intermediate nodes with valid routes can reply.

• RLSC-D: A node A issues a RREQ with FSSDLreq
D = SSDLA

D for destination D.

• CLSC-D: Node A relays RREQs with FSSDLreq
D = u(FSSDLreq

D , SSDLA
D).

185

• GLSC-D: An intermediate node I having a valid active route can reply to a request if

SSDLI
D � FSSDLreq

D .

A local-repair operation can be performed by intermediate nodes to repair routes

locally using a neighbor query that is a RREQ with ttl set to one. The in-order operator (u)

is used when relaying RREQs, because a previously expired path to the destination can be

activated without modifying the stored SSDLs. For example, in Figure 5.7, node A can search

a route to D through a path PQR because the the SSDLs are in-order and every RREQ will

be relayed with the stored SSDL. However, if the RREQ traverses a path PBC , then FSSDL

will be set to φ, and the RREQ can only be answered by the destination, which will force the

nodes along the path to reset their SSDLs. A local-repair can be performed by an intermediate

node B without sending a RERR to source A when its current link to C fails. A one-hop RREQ

query sent will be answered by node Y or Q.

5.3.3 Termination Properties

The proof that all nodes will invalidate their routing entries for a destination that is

partitioned follows directly from Theorem 27 which shows that the property holds when the

destination is the only node that can generate replies. In LSR-D, according to Theorem 33, the

DASG is instantaneously loop-free and no nodes ever choose any nodes upstream in the DASG.

This means that the RERRs that propagate along the DASG will force all nodes to invalidate

their route entries for the partitioned destination.

Theorem 34. In an error-free stable connected network, a source will establish a route to a

186

Y

X

A

B

C

D

Z
R

Q

P[(A,1),3]

 [(A,1),1]

[(A,1),2]

[(A,1),1]

[(A,1),2]

[(A,1), 8]

Y

X

A

B

C

D

Z
R

Q

P[(A,1),3]

[(A,1),2]

[(A,1),1]

[(A,1),2]
[(A,2),2]

[(A,2),3]

[(A,1),

 [(A,1),1]

8]

 [(A,2),1]

(a) Initial labeling (b) After reset

Figure 5.7: Labeling with SSDLs

destination in finite time.

Proof. Let source A issue a RREQ for destination n1 that traverses a path P = {nk,nk−1,...,ni}

(where ni can be n1), before reaching the destination n1 or a node that satisfies GLSC-D. If

SSDLreq
n1 = φ, then the RREQ can only be answered by the destination, and the proof follows

that of Theorem 27. Otherwise, when the RREP is transmitted along the reverse path to node

ni−1 by node ni, it is true that SSDLrep
D = SSDLni

D�FSSDLreq
D because of GLSC-D and

CLSC-D. Hence, node ni−1 must be able to accept the RREP, which will satisfy SSDLC. The

same argument holds at every node that relays the RREP along the reverse path to source A.

If a node along path P modifies its label set by processing another route computation, then

the RREP will not be accepted and will not be relayed to the source. However, sources retry

RREQs and there are only a finite number of nodes in the network. From the same argument as

in Theorem 28, each source must be able to establish a route to the destination.

187

Table 5.1: Performance average over all pause times for 50 nodes network for 10-flows and
30-flows

Protocol Flows Delivery Ratio Latency (sec) Net Load Data Hops
DSLR 10 0.996±0.001 0.016±0.002 0.271±0.067 2.612±0.182
LSR 10 0.995±0.001 0.017±0.002 0.313±0.082 2.628±0.186
LSR-D 10 0.995±0.001 0.025±0.005 0.374±0.093 2.535±0.167
LSR-D-LR 10 0.995±0.001 0.025±0.004 0.372±0.098 2.539±0.168
AODV 10 0.994±0.002 0.016±0.003 0.270±0.066 2.576±0.179
AODV-LR 10 0.994±0.002 0.017±0.004 0.266±0.067 2.580±0.180
DSR 10 0.940±0.027 0.041±0.047 0.220±0.095 2.677±0.185
OLSR 10 0.887±0.040 0.012±0.001 1.937±0.220 2.456±0.175
DSLR 30 0.830±0.035 0.446±0.100 3.566±0.821 2.617±0.172
LSR 30 0.859±0.038 0.480±0.170 2.229±0.657 2.678±0.223
LSR-D 30 0.858±0.037 0.475±0.159 2.226±0.628 2.675±0.224
LSR-D-LR 30 0.867±0.036 0.442±0.159 1.777±0.507 2.703±0.229
AODV 30 0.765±0.055 1.010±0.356 4.423±1.289 2.951±0.324
AODV-LR 30 0.770±0.056 0.965±0.333 4.269±1.264 2.929±0.309
DSR 30 0.683±0.059 4.760±1.073 0.410±0.140 3.625±0.308
OLSR 30 0.798±0.034 0.883±0.311 0.713±0.069 2.478±0.161

Table 5.2: Performance average over all pause times for 100 nodes network for 10-flows and
30-flows

Protocol Flows Delivery Ratio Latency (sec) Net Load Data Hops
DSLR 10 0.991±0.004 0.034±0.006 0.907±0.237 3.851±0.307
LSR 10 0.990±0.004 0.042±0.007 1.192±0.342 3.814±0.314
LSR-D 10 0.989±0.005 0.069±0.013 1.462±0.412 3.690±0.302
LSR-D-LR 10 0.988±0.005 0.069±0.013 1.353±0.405 3.747±0.294
AODV 10 0.988±0.004 0.036±0.009 0.897±0.236 3.744±0.293
AODV-LR 10 0.988±0.004 0.035±0.008 0.872±0.221 3.767±0.293
DSR 10 0.876±0.050 0.099±0.057 0.859±0.353 4.257±0.317
OLSR 10 0.821±0.063 0.022±0.002 11.795±1.575 3.583±0.256
DSLR 30 0.690±0.033 0.728±0.107 11.845±1.733 3.864±0.194
LSR 30 0.737±0.039 0.751±0.129 8.213±1.473 3.941±0.237
LSR-D 30 0.738±0.039 0.754±0.133 8.248±1.503 3.961±0.244
LSR-D-LR 30 0.757±0.033 0.669±0.118 6.229±1.154 4.020±0.259
AODV 30 0.608±0.051 1.455±0.385 18.298±13.069 4.751±0.434
AODV-LR 30 0.592±0.044 1.617±0.538 21.339±15.523 4.868±0.463
DSR 30 0.618±0.049 5.125±0.782 1.243±0.405 6.141±0.499
OLSR 30 0.612±0.041 3.371±0.532 5.423±0.669 4.014±0.277

188

Table 5.3: Performance average over all pause times for 50-nodes and 100-nodes network with
30-flows (fixed, long-lived)

Protocol Flows Delivery Ratio Latency (sec) Net Load Data Hops
DSLR 50 0.803±0.053 0.432±0.148 4.027±1.113 2.716±0.199
LSR 50 0.823±0.053 0.444±0.185 3.194±1.006 2.754±0.224
LSR-D 50 0.842±0.059 0.458±0.251 2.250±0.864 2.797±0.288
LSR-D-LR 50 0.847±0.058 0.450±0.252 1.845±0.751 2.840±0.300
AODV 50 0.738±0.083 0.866±0.473 5.044±1.874 3.084±0.424
DSR 50 0.581±0.081 3.422±0.813 0.430±0.156 3.809±0.406
OLSR 50 0.772±0.042 0.842±0.413 0.727±0.072 2.534±0.187
DSLR 100 0.686±0.063 0.589±0.143 11.627±2.837 3.913±0.286
LSR 100 0.695±0.063 0.641±0.169 10.934±2.470 4.016±0.372
LSR-D 100 0.744±0.064 0.567±0.189 7.304±2.048 4.042±0.388
LSR-D-LR 100 0.769±0.062 0.496±0.176 5.289±1.691 4.103±0.401
AODV 100 0.608±0.088 1.060±0.402 16.812±8.743 4.731±0.696
DSR 100 0.476±0.099 3.865±1.150 1.208±0.453 6.177±0.733
OLSR 100 0.585±0.066 2.761±1.062 5.541±0.811 4.074±0.452

5.4 Simulation Results

We present results over varying loads and mobility for an instantiation of DSLR that

selects shortest-cost paths, LSR, which adopts the simplified labeling scheme of SLR, and LSR-

D, which uses SSDLs. We also present results for LSR-D-LR, which is LSR-D with the local-

repair scheme. The protocols used for comparison are two on-demand protocols, DSR and

AODV, and OLSR, which is a pro-active link state protocol. Simulations are run in Qualnet

3.5.2. AODV, DSLR, LSR, LSR-D, and LSR-D-LR, use an expanding-ring search scheme

when flooding RREQs. AODV and DSLR set the ttl of the RREQs to the last-known hop-count

of the destination.

Simulations are performed for two scenarios, (i) a 50-node network with terrain di-

mensions of 1500m x 300m, and (ii) a 100-node network with terrain dimensions of 2200m x

600m. Traffic loads are CBR sources with a data packet size of 512 bytes. Load is varied by

189

using 10 flows (at 4 packets per second) and 30 flows (at 4 packets per second). The MAC

layer used is 802.11 with a transmission range of 275m and throughput 2 Mbps. The simulation

is run for 900 seconds. Node velocity is set between 1 m/s and 20 m/s. We have two sets of

traffic flow patterns: (i) flows that have a mean length of 100 seconds distributed exponentially

between randomly picked sources and destinations; and (ii) flows between fixed pairs of sources

and destinations that last the entire simulation time. Each combination (number of nodes, traf-

fic flows, scenario, routing protocol and pause time) is repeated for nine trials using different

random seeds.

We present four metrics. Delivery ratio is the ratio of the packets delivered per

client/server CBR flow. Latency is the end to end delay measured for the data packets reaching

the server from the client. Network load is the total number of control packets (RREQ, RREP,

RERR, Hello, TC etc) divided by the received data packets. Data hops is the number of hops

traversed by each data packet (including initiating and forwarding) divided by the total received

packets in the network. This metric takes into account packets dropped due to forwarding along

incorrect paths. A larger value for the data-hops metric indicates that more data packets traverse

more hops without reaching the destination necessarily.

5.4.1 Performance Summary

Tables 5.1 and 5.2 summarize the results of the different metrics by averaging over

all pause times for the 50 and 100 node networks with random flows. Table 5.3 summarizes

the same set of metrics for 50 and 100-node networks with fixed flows. The columns show the

mean value and 95% confidence interval. All our performance discussions focus on the average

190

case because the confidence intervals overlap atleast slightly in most cases. The packet delivery

ratio, the end-to-end delay, and the control overhead over various pause times is shown for a

100-node network with 30-flows in Figures 5.8, 5.9 (results for LSR-D are not shown). The

vertical bars in the graphs indicate the 95% confidence intervals.

The performance results show that DSLR, LSR, and LSR-D outperform AODV, DSR,

and OLSR. LSR has better packet delivery and lower control-overhead than DSLR across the

different scenarios. This is because the labeling in LSR allows one-hop neighbors of the source

to initiate RREPs, thus avoiding RREQ floods, whereas RREPs in DSLR can be initiated by

the destination only. Note that if the elaborate labeling scheme of SLR is used, it is also pos-

sible for intermediate nodes that are across multiple hops from the source to initiate RREPs.

The latency of DSLR is slightly better than of LSR because DSLR establishes more optimal

(shortest-cost) paths because RREQ floods search for the destination after a route failure. In the

case of LSR, the replies from intermediate nodes need not necessarily reflect the best path when

nodes are mobile. The optimal forwarding of packets is also shown in the data-hops metric of

DSLR, which is slightly lower than that of LSR. LSR-D’s performance is equivalent to that of

LSR across the different scenarios. However, the local-repair of LSR-D-LR shows a noticeable

improvement in performance, particularly, in the 100-node, 30-flow scenarios where excessive

RREQ flooding can cause congestion. The local-repair allows nodes to resolve failure without

reporting a RERR to the source, which will then retry flooding RREQs. The key feature is that

the RREQ sent with a ttl of one can elicit a reply from one of the neighbors. Although, AODV

supports a local-repair operation, it floods the RREQ to locate the destination.

The performance of AODV, DSR, and OLSR suffer from the following problems:

191

AODV suffers from excessive RREQ flooding. Note, however, that DSLR must also have

RREPs sent by the destination, making it almost similar to AODV’s case. We noticed that

AODV was generating an excessive number of RREPs, and yet the number of RREPs received

at the sources was far smaller. This could be caused by RREPs being forwarded by nodes us-

ing a reverse route entry, which is only valid for a limited time. Hence, with congestion, it is

possible that these RREPs get delayed and are dropped. DSR suffers from stale caches and

source-routes need not necessarily reflect the topology of the mobile network. OLSR suffers

from temporary loops. The number of messages exchanged in OSLR is constant although the

control overhead calculated depends on the number of flows in the network.

5.4.2 Performance Improvements with Local route recovery

We compare the performance of the LSR-D one-hop route recovery mechanism against

other proposed mechanisms. We simulate AODV with the local route repair operation as spec-

ified in the draft, in the same set of scenarios. The version also includes the expanding ring

search as discussed in [33]. Although, DSR can recover routes locally using a packet salvaging

mechanism, we could not simulate it because a a salvage count is required to prevent data pack-

ets from being recovered and sent in loops infinitely, and an ideal salvage count value is not

specified in the draft.

The summarized results for AODV-LR (AODV with local repair) are listed in Tables

5.1, and 5.2. The performance results for AODV-LR show no significant improvement over

AODV. Table 5.4 shows the number of attempts and successful local repairs for LSR-D-LR

and AODV in a 100-node network with 30-flows for all pause times. The statistics show that

192

Table 5.4: Local Repair statistics for 100 nodes network with 30-flows

AODV-LR LSR-D-LR
Pause Time RREQ Attempts %Repair RREQ Attempts %Repair
0 81.33 91.26 3684.11 37.15
50 90.44 90.42 3582.67 36.96
100 108.11 90.24 3830.89 36.77
200 151.33 92.51 3860.44 38.51
300 205.89 92.66 3672.11 41.13
500 190.67 92.42 3333.33 43.02
700 211.00 92.89 3565.89 42.79
900 200.56 93.68 3221.89 45.19

AODV only attempts about 100-200 local repairs and 9̃0% of them succeed (by flooding to the

destination). In the case of LSR-D-LR, about 4000 local repairs are attempted and half of them

succeed. The reason for the low number of RREQ attempts by AODV is that the specification

states that the local repair RREQ flood must not reach the source. Therefore, a check is made on

the ttl of a local repair RREQ; if it will reach the source, then the repair attempt is aborted. LSR-

D-LR suffers no such limitation as it performs only performs a one-hop neighbor query. These

set of simulations were run on asymmetric flow distributions, which means that the AODV local

repair operation might fail because it does not know the hopcount to the source. However, our

results correlate with the recent study [33] on the scalability of AODV. The results are presented

for a set of 20 randomly picked source/destination CBR flows(unidirectional), in networks with

up-to 10,000 nodes under different optimizations. However, in networks of 50 to 100 nodes,

it can be deduced ([33], Fig.6, pp.106) that the number of local route repair attempts is of the

order of 100-200, correlating with our results.

To validate our intuition here, we ran simulations for AODV with local repair and

LSR-D-LR for a network of 50 nodes, with 15 random bi-directional flows, exponentially dis-

193

tributed at 100 secs; the average performance results are tabulated in Table 5.5. LSR-D-LR,

once again, outperforms AODV by a huge margin. Table 5.6 shows the local repair statistics for

AODV-LR, and LSR-D-LR in the scenario with bi-directional flows. LSR-D-LR recovers about

half of the route failures with a neighbor query, after sending about 2500 local repair RREQs.

On the other hand, AODV’s local repair scheme only initiates about less than ten RREQs per

run. This is about ten times less than the previous results for the 100-node scenarios. The

skipped column shows the average number of skipped attempts in each pause time which is

about every attempt. The reason for so many skipped attempts is because of the ttl-check for

the local repair RREQ [33]: A local repair RREQ est-ttl is calculated to fall in the range,

AODV MIN REPAIR TTL < est-ttl < (hopcount-to-source)/2 + AODV LOCAL ADD TTL. The

prescribed value for AODV LOCAL ADD TTL is two, and that for AODV MIN REPAIR TTL is

one. To initiate a RREQ, it is necessary that est-ttl be less than the hopcount-to-source. Solving

the inequality, a node can initiate a RREQ only if (hopcount-to-source) > 4. This basically

limits the route repair operation to only intermediate nodes which are atleast at a distance of

four hops from the source; if the total path length is less than four hops, no attempts are made.

This also explains the disparity of very few attempts in the 50-nodes network compared to more

local repair attempts in the 100-nodes network, because of longer path lengths.

Table 5.5: Performance average over all pause times for bi-directional flows

Metric LSR-D-LR AODV-LR
Delivery Ratio 0.828±0.032 0.699±0.074
Latency (sec) 0.618±0.178 1.449±0.467
Net Load 2.378±0.558 4.911±1.265
Data Hops 2.790±0.215 3.158±0.447

194

Table 5.6: Local Repair statistics for bi-directional flows

AODV-LR LSR-D-LR
Pause Time Skipped RREQs %Repair RREQs %Repair
0 2201.89 3.33 90.00 2003.12 38.21
50 2510.67 5.44 95.92 2088.33 38.02
100 2844.89 7.78 95.71 2341.00 37.28
200 2603.44 4.89 100.00 2205.78 37.74
300 2994.67 6.56 100.00 2523.78 37.88
500 2938.78 6.33 96.49 2436.11 40.59
700 3349.67 7.00 96.83 2908.78 36.29
900 2959.56 5.00 100.00 2512.89 40.77

5.5 Conclusion

We have introduced the first routing framework for on-demand loop-free routing in

MANETs based on the source sequence number that is used to identify RREQs originated

uniquely. We presented three approaches within this framework (DSLR, SLR, and LSR-D)

that are robust to node failures, loss of information, and unreliable message delivery. They al-

low hop-by-hop routing of data packets while maintaining instantaneous loop-freedom of the

routing tables without requiring time-stamps, source-routes, or any other synchronization tech-

niques spanning single (i.e., packet filtering) or multiple hops. Performance results in 50 and

100-node networks with random traffic flows show that protocol instantiations of the proposed

frameworks consistently deliver more data packets than DSR, AODV, and OLSR, while reduc-

ing control overhead and data packet latency.

195

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−101 AODV LSR LSR−D LSR−D−LR DSLR DSR OLSR

0 50 100 200 300 500 700 900
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
−10

0

10

20

30

40

50

60

70

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 5.8: Random (100-nodes, 30-flows, 120 pps)
196

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−101 AODV LSR LSR−D LSR−D−LR DSLR DSR OLSR

0 50 100 200 300 500 700 900
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
0

10

20

30

40

50

60

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 5.9: Fixed (100-nodes, 30-flows, 120 pps)
197

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−101 AODV LSR LSR−D LSR−D−LR DSLR DSR OLSR

0 50 100 200 300 500 700 900
0.4

0.5

0.6

0.7

0.8

0.9

1

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
0

2

4

6

8

10

12

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 5.10: Random (50-nodes, 30-flows, 120 pps)
198

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−101 AODV LSR LSR−D LSR−D−LR DSLR DSR OLSR

0 50 100 200 300 500 700 900
0.4

0.5

0.6

0.7

0.8

0.9

1

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

(a) Packet Delivery

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

(b) Latency

0 50 100 200 300 500 700 900
0

2

4

6

8

10

12

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

(c) Control Overhead

Figure 5.11: Fixed (50-nodes, 30-flows, 120 pps)
199

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we explore new robust and efficient techniques for loop-free on-demand

routing in mobile ad hoc networks (MANETs). Current on-demand proposals attain loop-

freedom by basing their routing decisions using either the freshness of updates determined using

timestamps, or with topology information. Using only the same information collected as in prior

proposals, we propose more effective mechanisms to attain loop-freedom while still improving

performance. We prove the correctness of our protocols even when operating in MANET envi-

ronments that are characterized by unreliable message delivery and failure of nodes. We show

with extensive simulation experiments that our proposed protocols perform better than the cur-

rent state-of-the-art MANET protocols prescribed in the IETF working group.

In the context of destination-sequence number based protocols, we show how the

sequence-number handling in current protocols can cause temporary loops, defacto partitions,

200

and count-to-infinity. We present a new destination-sequence number framework that eliminates

these problems and show how it can be applied to previous proposals to solve their problems.

Differing from the traditional notion of a sequence number as a timestamp, we show how se-

quence numbers can be manipulated to achieve better performance in an on-demand routing

protocol.

In topology-based routing protocols, the fundamental problem associated with main-

taining loop-freedom is that of ensuring consistent information across the network when mak-

ing routing decisions. We present two different approaches to solving this problem. In the first

approach, we translate path information, which may become inaccurate later, into labels that

are stored at nodes to maintain a strict ”lexicographic” ordering that become ”smaller” along

any successor path to the destination. By allowing nodes to pick only successors that have

a ”smaller” label, loops are prevented. We illustrate how packet-filtering or our destination-

sequence number framework can be used by nodes to reset stored labels. In the second ap-

proach, we introduce the notion of trusted topology information. Nodes maintain a list of un-

trusted links that should not be used for their routing decisions, inaddition to their known trusted

links to a destination. This allows nodes to make routing decisions based on correct topology

information, which inherently allows loop-free operation. We use the destination-sequence

number mechanism as a reset to allow nodes to trust all links.

All on-demand routing protocols proposed to date use a uniquely identified flood

search that creates loop-free paths to the destination. However, all of them use extra information

and mechanisms to attain loop-free routing. We motivate our research by asking if loop-free

routing can be achieved using the most minimal information that is required in any on-demand

201

routing protocol for a flood search. We present the first framework that allows loop-free routing

using these same paths that are created during the flood search. To improve the performance of

the protocol, we show how additional information can be collected within the same flood search

framework and be used effectively to recover routes.

6.2 Future Work

In this thesis, we have focussed on the loop-freedom and safety of the routing proto-

cols. The generic loop-free conditions we present can be used in the context of wired routing

protocols, i.e., feasible labels used in FLR can be extended for use in the Border Gateway Rout-

ing (BGP) protocol to obtain instantaneous loop-freedom. The loop-free techniques can also be

applied to multipath and multicast routing.

Energy efficiency is an important consideration for MANETs; therefore, it will be

interesting to investigate the energy efficiency of the proposed protocols, given that all of them

incur less control overhead. Quality of Service (QoS) routing takes importance in MANETs

that require support for real-time traffic. An interesting extension to the currently proposed

protocols would be to support QoS based routing.

Security is an important issue in the context of ad hoc networks where malicious

intruders can join and disrupt routing in the network. Most secure routing protocol proposals

require the destination to answer the route request with a route reply which can be verified along

the successor path being set up. The source sequence-number routing framework can be used

in this context to design a secure routing protocol. The SSLs and RSLs can be encrypted and

202

because they are only stored and relayed by nodes other than the ones originating them, the

integrity of the routing messages can be verified.

203

Bibliography

[1] I.D. Chakeres and L. Klein-Berndt, “AODVjr, AODV Simplified,” ACM Mobile Computing and

Commun. Review, Vol. 6, No. 3, 2002, pp. 100-101.

[2] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol,” Request for Comments 3626,

October 2003.

[3] M. Spohn and J. J. Garcia-Luna-Aceves, “Neighborhood Aware Source Routing,” Proc. ACM Mo-

biHoc 2001, pp. 11–21, Long Beach, CA, Oct. 4–5, 2001.

[4] H. Rangarajan, and J. J. Garcia-Luna-Aceves, ”Achieving Loop-Free Incremental Routing in Ad

Hoc Networks,” Proc. ISCC 2004, Alexandria, Egypt, July 2004

[5] H. Rangarajan and J. J. Garcia-Luna-Aceves, “Loop-free On-demand Routing using Source Se-

quence Numbers”, The 2nd IEEE MASS, Nov 7-11, 2005, Washington D.C., Washington, USA.

[6] E. M. Gafni and D. P. Bertsekas, “Distributed Algorithms for Generating Loop-Free Routes in Net-

works with Frequently Changing Topology,” IEEE Trans. Comm., COM-29(1):11–18, Jan. 1981.

[7] J. J. Garcia-Lunes-Aceves, “Loop-Free Routing Using Diffusing Computations,” Proc. IEEE/ACM

Trans. Networking, 1(1):130–41, Feb. 1993.

[8] J. J. Garcia-Luna-Aceves, M. Mosko and C. Perkins, “A New Approach to On-Demand Loop-Free

204

Routing in Ad Hoc Networks,” Proc. PODC 2003, pp. 53-62, Boston, Massachusetts, July 13–16,

2003.

[9] M. Gerla, X. Hong, and G. Pei, “Fisheye State Routing Protocol (FSR) for Ad Hoc Networks,”

draft-ietf MANET-fsr-02. txt, IETF MANET Working Group-Internet Draft, Dec. 2001.

[10] J. J. Garcia-Luna-Aceves and M. Spohn, “Source-Tree Routing in Wireless Networks,” Proc. IEEE

ICNP’99, pp. 273–82, Toronto, Canada, October 31–November 3, 1999.

[11] S. Gwalani, E. M. Belding-Royer, and C. E. Perkins, “AODV-PA: AODV with Path Accumulation,”

Proc. Next Generation Internet Symposium, Anchorage, Alaska, May 2003.

[12] Y. C.Hu and D. B. Johnson, “Implicit Source Routing in On-Demand Ad Hoc Network Routing,”

In ACM MOBIHOC 2001, pp. 1-10, Long Beach, CA, Oct. 4–5, 2001.

[13] D. Johnson et al, “The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks (DSR),”

IETF Internet draft, draft-ietf-manet-dsr-09.txt, April 2003.

[14] J. J. Garcia-Luna-Aceves and H. Rangarajan, “ A New Framework for Loop-Free On-Demand

Routing Using Destination Sequence Numbers,” The 1st IEEE Conference on Mobile and Ad hoc

Sensor Systems, October 25-27, 2004, Fort Lauderdale, Florida, USA.

[15] H. Rangarajan and J. J. Garcia-Luna-Aceves,”Making On-demand Routing Protocols Based on

Destination Sequence Numbers Robust,” Proc.ICC, May 16-20,2005, Seoul, Korea.

[16] S. Gwalani, E. M. Belding-Royer and C. E. Perkins, “AODV-PA: AODV with path accumulation,”

ICC 2003 - IEEE International Conference on Communications, vol. 26, no. 1, May 2003, pp. 527

- 531.

[17] R. Ogier et al., “Topology Dissemination Based on Reverse-Path Forwarding (TBRPF),”Request

for Comments 3684, February 2004.

205

[18] V. D. Park and M. S. Corson, “A highly adaptive distributed routing algorithm for mobile wireless

networks,” In IEEE INFOCOM, pp. 1405–13 vol.3, Apr. 1997.

[19] C. Perkins et al., “Ad hoc On-Demand Distance Vector (AODV) Routing,” Request for Comments

3561, July 2003.

[20] S. Roy and J. J. Garcia-Luna-Aceves, “ Using Minimal Source Trees for On-Demand Routing in

Ad Hoc Networks,” Proc. IEEE INFOCOM 2001, Anchorage, Alaska, April 22-26, 2001.

[21] C. Sengul, “Local Route Recovery in Mobile Ad Hoc Networks,” M.S. Thesis, Computer Science,

Univ. of Illinois at Urbana-Champaign, 2003.

[22] M. Spohn and J. J. Garcia-Luna-Aceves, “Neighborhood Aware Source Routing,” Proc. ACM Mo-

biHoc 2001, pp. 11–21, Long Beach, CA, Oct. 4–5, 2001.

[23] S. Vutukury and J.J. Garcia-Luna-Aceves, “ A Simple Approximation to Minimum-Delay Routing,

“ Proc. ACM SIGCOMM ’99, Cambridge, Massachusetts, September 1–3, 1999.

[24] K. Bhargavan, C.A. Gunther, and D. Obradovic, “Fault Origin Adjudication,” Proc. Workshop on

Formal Methods in Software Practice, Portland, OR, Aug. 2000.

[25] C. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-Vector Routing

(DSDV) for Mobile Computers,” Proc. ACM SIGCOMM 94, pp. 234 – 244, 1994, London, United

Kingdom.

[26] J. J. Garcia-Luna-Aceves and H. Rangarajan, “A New Framework for Loop-Free On-Demand

Routing Using Destination Sequence Numbers,” Proc. IEEE International Conference on Mobile

Ad-hoc and Sensor Systems (MASS), October, 2004, Fort Lauderdale, Florida, USA.

[27] M. Mosko and J. J. Garcia-Luna-Aceves, “Loop-Free Routing Using a Dense Label Set in Wireless

Networks,” Proc. ICDCS 2004, March, 2004, Tokyo, Japan.

206

[28] R. V. Boppana and S. P. Konduru, “An Adaptive Distance Vector Routing Algorithm for Mobile,

Ad Hoc Networks,” Proc. IEEE Infocom, Volume 3, pp. 1753–1762, Anchorage, Alaska, April

2001.

[29] M. K. Marina and S. R. Das. “On-Demand multipath distance vector routing for ad hoc networks,”

Proc. of the Int’l Conf. for Network Procotols (ICNP), pp. 14–23, Riverside, 2001.

[30] C. E. Perkins, E. M. Belding-Royer and I. D. Chakeres, “Ad hoc On-Demand Distance Vector

(AODV) Routing,” IETF Internet Draft, draft-perkins-manet-aodvbis-01.txt, January 2004.

[31] E. M. Royer and C. E. Perkins, “Multicast Operation of the Ad hoc On-Demand Distance Vector

Routing Protocol,” Proc. MobiCom ’99, pp. 207–218, Seattle, WA, August 1999.

[32] M. Chandra, “Extensions to OSPF to Support Mobile Ad Hoc Networking,” IETF Internet draft,

draft-chandra-ospf-manet-ext-02, October 2004.

[33] S. J. Lee, E . M. Belding-Royer and C. E. Perkins, “Scalability study of the ad hoc on-demand

distance vector routing protocol,” Int. Journal on Network Management, 13(2), 2003, 1099-1190,

pp. 97–114.

[34] H. Rangarajan and J.J. Garcia-Luna-Aceves, “Using Labeled Paths for Loop-free On-Demand

Routing in Ad Hoc Networks,” Proc. ACM MobiHoc 2004, Tokyo, Japan, May 24–26, 2004.

[35] ”IEEE standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications,” Nov 1997, P802.11.

[36] J. Raju and J. J. Garcia-Luna-Aceves, “A New Approach to On-Demand Loop-Free Multipath

Routing,” Proc. IEEE IC3N’99, pp. 522–7, Boston, Massachusetts, Oct. 11–13, 1999.

[37] V. Park and S. Corson, ”A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless

Network,” Proc. INFOCOM ’97, pp. 1405–13, Washington DC, USA, 1997.

207

[38] E. B. Royer, I. Chakeres, D. B.Johnson, and C. E.Perkins, “Dynamic MANET On-demand Routing

Protocol (DyMO)”, IETF Internet draft, draft-ietf-manet-dymo-00, January 2005.

[39] J. Behrens and J.J. Garcia-Luna-Aceves, “Fast Dissemination of Link States Using Bounded Se-

quence Numbers with no Periodic Updates or Age Fields,” Proc. ICDCS’97, Baltimore, Maryland,

May 27–30, 1997.

[40] Y. C. Hu and D. B. Johnson, “Ensuring Cache Freshness in On-Demand Ad Hoc Network Routing

Protocols,” Proc. of the POMC 2002 Workshop, pp. 25-30, ACM, Toulouse, France, October 2002.

[41] C. Perkins et al, “Performance Comparison of Two On-demand Routing Protocols for Ad Hoc

Networks,” IEEE Personal Communications, 8(1):16 – 28, Feb 2001.

[42] IETF MANET Working Charter, http://www.ietf.org/html.charters/manet-charter.html.

[43] J. J. Garcia-Luna-Aceves and S. Roy, “On-Demand Loop-Free Routing with Link Vectors,” 12th

IEEE International Conference on Network Protocols (ICNP’04), Berlin, Germany, October 5-8,

2004.

[44] Scalable Network Technologies. Qualnet 3.5.2.

208

